《哈密顿力学》PPT课件.ppt
《《哈密顿力学》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《哈密顿力学》PPT课件.ppt(134页珍藏版)》请在三一办公上搜索。
1、理论力学(二),哈密顿力学2009.10,拉格朗日方程的降阶,拉格朗日函数是以广义坐标和广义速度描述系统的。通过拉格朗日方程,可以得到二阶微分方程组。这与牛顿力学通过力的各个分量的分析,得到运动的加速度满足的方程具有类似的形式。可以用广义速度为中间变量vi,把二阶微分方程变为一阶微分方程,代价是变量个数加倍。,广义动量作为中间变量,这2s个方程中,计算 qi 的时间微商太简单,而计算 vi 的时间微商太复杂。中间变量取 vi 并不合适。从拉格朗日方程看,直接可以计算广义动量 pi,因而把它取为中间变量是合适的。但是,拉格朗日函数中,自变量含有广义速度,而不含有广义动量。需要反解出广义速度用广义
2、动量来表达。哈密顿力学的理论研究了如何取自变量和系统函数来描述力学体系,使所得方程更加简单易解:,勒让德变换,系统函数以谁为自变量,则它的全微分就写成这些变量的微分之线性组合,系数就是该自变量的共轭变量,也即系统函数对该自变量的偏微分。勒让德变换可以将系统函数的某个自变量(如下例的x)换为它的共轭变量(u),同时,系统函数也有相应变化。例如:,拉格朗日函数变换为哈密顿函数,拉格朗日函数为系统函数时,广义速度和广义动量是共轭坐标。如果想以 pi 为自变量,则进行勒让德变换:,哈密顿函数,定义哈密顿函数H(p,q,t),数值上等于广义能量积分,但必须以广义动量为自变量。则对应有:,哈密顿正则方程,
3、得到哈密顿正则方程(共2s个):方程给出了2s个变量随时间的变化率,可一步步积分求出以后各个时刻的值。其中前s个给出广义速度和广义动量之间的关系,后s个等价于原来的s个拉格朗日方程。p 和 q 称为正则共轭变量,正则方程具有对称形式。,哈密顿正则方程中的循环坐标,从对应关系 得知,如果拉格朗日函数不显含某个广义坐标,即存在某循环坐标,则哈密顿函数也不显含它,对应的广义动量守恒,因而可以将系统的自由度减少一维(可遗坐标)2s个正则变量只要其中一个在哈密顿函数中不显含,它对应的正则共轭变量就是常数,系统的自由度就可以减少一维(可遗)。如果拉格朗日函数不显含时间,则哈密顿函数也不显含时间,广义能量积
4、分或哈密顿量守恒。,哈密顿正则方程与拉格朗日方程比较,拉格朗日函数及方程可以直接得到。而哈密顿函数需要通过广义动量代替广义速度之后,从拉格朗日函数经过变换得到。拉格朗日方程是二阶的微分方程,而哈密顿方程是一阶的。但哈密顿方程的变量个数增大了一倍。对于循环坐标,哈密顿正则方程处理起来方便很多,无论哈密顿函数缺少任意一个q,p,t,都可以找到它相应的守恒量。拉格朗日方程和哈密顿方程本质上是等价的。,劳斯函数,经过对比得知,哈密顿正则方程擅长对循环坐标处理,而拉格朗日方程对普通坐标处理较为简便。若只对循环坐标采用勒让德变换,使其处理用哈密顿正则方程,而对其余则不做变换,所得的为劳斯函数。设q1qm是
5、循环坐标,其余不是,则劳斯函数为,劳斯方程,同时,对应可得,由哈密顿原理推导哈密顿正则方程,由哈密顿原理出发,将p,q都看成是独立变量,变分之后能得到哈密顿正则方程。,第15次课,哈密顿正则方程解题步骤,用哈密顿正则方程解题的步骤大致有确定系统的自由度,选取广义坐标。写出系统的拉格朗日函数。计算广义动量,并用广义动量来表示广义速度。通过勒让德变换计算哈密顿函数H。得到的H表达式中的广义速度用广义动量替换。列出哈密顿正则方程。求解方程,得到广义坐标随时间的变化关系。并结合初始条件确定积分常数。,哈密顿正则方程举例一,一维弹簧振子,哈密顿正则方程举例二,平方反比有心力场中的运动不能因为pq是恒量而
6、直接替去L中的,而是应该用劳斯函数,其中pq才能当常数处理。,哈密顿正则方程举例三,带电粒子在电磁场中运动,哈密顿正则方程举例四,相对论粒子在电磁场中运动,正则变换,通过对拉格朗日函数做勒让德变换,以广义动量为自变量替换了广义速度,得到哈密顿正则方程。进一步,考虑用一组新的自变量 Qi(q,p,t),Pi(q,p,t)和新的系统函数 K(Q,P,t)和方程来描述力学体系的演化,有可能使得方程求解更加简便。如果新的变量和函数之间仍然满足正则方程,则从q,p,H到Q,P,K的变换为正则变换。,正则变换的等价条件,如果到Q,P,K的变换为正则变换,则有 反之,将Q,P视为独立变量,也可以得到正则方程
7、,因而是正则变换。进一步,如果有(其中 f 是任意函数),则显然也能满足积分的变分为0的条件,也即能判断是正则变换。这是因为真实运动过程的作用量最小,无论用新旧变量描述,只相差一个全微分。,正则变换的生成函数,虽然 f 任意,按照其全微分应该写为各个变量微分的线性组合的原则,这里 f 称为生成函数,它的自变量应该是 f1=f(q,Q,t)。因此对应各项系数,有,正则变换的第2种类型,还可以通过勒让德变换,用 p 或 P 作为 f 的自变量,能得到其他3种类型的正则变换。对应各项系数有,正则变换的3、4种类型,第3种类型的正则变换的生成函数和系数对应关系为:第4种类型的关系为:,第16次课,几个
8、简单的正则变换,广义坐标和广义动量互换,生成函数为相空间平移,正则变换实例,给定P,Q表达式,求证为正则变换的问题,通过化 为全微分即可(若没给 K 则取 K=H)。例:证明 Q=ln(sin(p)/q),P=q cot(p)为正则变换。,正则变换实例,证明给定P=P(p,q),Q=Q(p,q)是正则变换的充分必要条件为雅克比行列式 证:,正则变换实例,给出变换求生成函数。已知有一变换Q=qncos(mp),P=qnsin(mp),其中m,n是常数。求该变换为正则变换时m,n的值。(2)正则变换时的第3类生成函数。证:,正则变换实例,给出生成函数求变换并求解。对于谐振子哈密顿函数 进行正则变换
9、,求解系统的运动。解:,正则变换实例,给出生成函数求变换并求解。已知生成函数 给出相应的正则变换,并求解抛体的运动问题。解:,泊松括号,泊松括号定义为对于只含单个p,q的情况是雅克比行列式。利用正则方程,任意函数的全微分可表示为:用以判断该物理量是否守恒。,第17次课,泊松括号基本性质,反对称性是否配对 正则变换时微分分配律结合律泊松恒等式正则不变性,泊松定理,如果f(q,p,t)和g(q,p,t)是守恒量,则由他们组成的泊松括号也是守恒量。利用全微分算符和偏微分算符可交换的性质,有即可得证。由泊松定理,可以从两个已知的守恒量推导出更多的守恒量,但大多得到的是常数或原来运动积分的线性组合。,泊
10、松括号的正则不变性,进行了正则变换之后,用新的P,Q作为泊松括号表达式中作偏导数的自变量,其泊松括号不变,即柏松括号的正则不变性。对于自由度为1的情况,有即可得证。多维的情况证明从略。,泊松括号例题,Jx,Jy,Jz和J分别是相对原点的角动量的三个分量和总角动量。求Jx,Jy,Jx,J,说明Jx,Jy不能同时成为广义动量,若他们两个都是运动积分,则Jz也是运动积分。证:两个广义动量的泊松括号必为0而Jx,Jy0。,哈密顿-雅可比方程的由来,取适当的生成函数,正则变换之后,有可能使得系统函数特别简单,从而方程的求解也很简单。最简单的情况是,系统函数变为0。这时,由P,Q满足的正则方程可得:因此,
11、P,Q均为常数。同时,若是第2类生成函数,则有,哈密顿-雅可比方程,这样,牛顿力学中求解方程的问题,转化为如何寻找适合的生成函数的问题。设生成函数(主函数)是S,则有这就是哈密顿-雅可比方程。通过求解此方程,可以得到包含s+1个积分常数(记为P0,P1,.,PS)的生成函数S。,哈密顿主函数中的积分常数,这s+1个积分常数,正是哈密顿-雅可比方程中s+1个自变量的偏微分经过积分得到的。其中,P0不起任何作用,也没有物理意义,可以舍去或取为0。其余s个,取作生成函数中的P,即正则变换的新广义动量。由正则变换,可以得到s个运动积分Q:,哈密顿主函数的物理意义,哈密顿主函数S其实正是作用量函数,这可
12、以从下式中看出:哈密顿主函数S也被称为哈密顿作用量函数。哈密顿函数如果不显含时间 t,则它为守恒量,从而主函数可以积分得到如:其中 W 不含时间,称为哈密顿特征函数。,哈密顿-雅可比方程的解法,求解偏微分的哈密顿-雅可比方程,一般常用分离变量法。如前面对哈密顿函数不含时间 t 的处理,即是分离变量 t。一般来说,如果哈密顿函数中只含有某个坐标 qk 和 pk 的组合 g(qk,pk),则在哈密顿-雅可比方程中,可以令而在哈密顿-雅可比出现这个组合的地方用这个常数代替,使方程中减少了这个变量。,第18次课,哈密顿-雅可比方程实例,用哈密顿-雅可比方程求解一维简谐振荡。解:,哈密顿-雅可比方程实例
13、,用哈密顿-雅可比方程求解开普勒问题。解:,哈密顿-雅可比方程分离变量实例,用哈密顿-雅可比方程求解哈密顿函数为的问题。解:,分析力学的应用连续体系,连续体系:由无限多个相互关联的介质或场构成的、空间上连续变化的力学体系。如弹性固体,流体,甚至电磁场,都可以当作连续体系处理。以一维弹性体为例,将连续体系看作是各个离散的质点,单位体积的拉格朗日函数为:,连续体系的拉格朗日函数,连续体系的特点是具有以时间和空间为自变量的场量。在弹性力学中,E是杨氏模量,代表物体的弹性。l是物体的线密度。偏离平衡位置的位移量作为连续体系的场量。全空间的拉格朗日函数为:其中,广义速度在保留一阶小量时可以写为q对时间的
14、偏微分。,连续体系的拉格朗日方程,连续体系的特点是具有以时间和空间为自变量的场量。拉格朗日密度函数一般含有场量对时间的偏微分和对空间的偏微分。从而可以运用哈密顿最小作用量原理求出场量所遵循的拉格朗日方程。,连续体系的拉格朗日方程,通过对时间和空间分部积分得到:,第19次课,一维弹性体的拉格朗日方程,对于一维弹性体,可得:这是一个以速度 vs 传播震动的波动方程。,电磁场的拉格朗日函数,对于电磁场本身贡献的部分,必须是与坐标选取无关的标量(注意到dVdt是4维时空的“体积”,是与坐标选取无关的量):,电磁场的拉格朗日方程,而带电粒子与场的相互作用部分为:从而:应用哈密顿原理得拉格朗日方程:,电磁
15、场的麦克斯韦方程,从而:,电磁场的麦克斯韦方程,加上本身具有的性质:构成了麦克斯韦方程组。并且,4维空间的方程具有简洁的形式,在相对论的洛仑兹变换下方程的形式不变。爱因斯坦的相对论论文题目就是“论运动物体的电动力学”。在电动力学中,光在不同坐标系中的速度不变是一个基本的事实。真空中电磁波满足波动方程与坐标系无关:,第20次课,量子力学的建立,经典物理学在描述微观世界时,遇到了很大的困难。在新的观念和假设下,量子力学得以建立,能成功地描述很多微观物理现象。量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起
16、构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学、半导体器件、激光等有关学科和许多近代技术中也得到了广泛的应用。,旧量子论,量子力学在旧量子论的基础上发展起来,旧量子论包括:普朗克的量子假说爱因斯坦的光量子理论玻尔的原子理论1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。,爱因斯坦的光量子理论,1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。其
17、后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。爱因斯坦获得诺贝尔奖是因为他的光电效应理论,而不是因为他的狭义相对论和广义相对论的工作。,玻尔的原子理论,1913年,玻尔在卢瑟福有核原子模型的基础上建立起原子的量子理论。按照这个理论,原子中的电子只能在分立的轨道上运动,原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。,量子力学与经典理论,从经典力学过渡到量子力学的过程中,需要对旧量子论涉及的物理现象有理论解释。量子理论在宏观世界中应该与经典力学的描述一
18、致。有关的工作有:德布罗意的波粒二象性的假说薛定谔方程海森伯的测不准关系狭义相对论量子理论,德布罗意的波粒二象性的假说,在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出微观粒子具有波粒二象性的假说。德布罗意认为:正如光具有波粒二象性一样,实体的微粒(如电子、原子等)也具有这种性质,即既具有粒子性也具有波动性。这一假说不久就为实验所证实。由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。当粒子的大小由微观过渡到宏观时,它所遵循的规
19、律也由量子力学过渡到经典力学。,薛定谔方程,量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。这个方程是薛定谔在1926年首先找到的,被称为薛定谔方程。这个方程,可以看作源自经典力学的哈密顿-雅可比方程,经过一些转换获得。,海森伯的测不准关系,当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全
20、确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。,相对论量子力学,量子力学和狭义相对论的结合产生了相对论量子力学。经狄拉克、海森伯和泡利等人的工作发展了量子电动力学。20世纪30年代以后形成了描述各种粒子场的量子化理论量子场论,它构成了描述基本粒子现象的理论基础。,新量子论,1925年,海森堡基于物理理论只处理可观察量的认识,抛弃了不可观察的轨道概念,并从可观察的辐射频率及其强度出发,和玻恩、约尔丹一起建立起矩阵力学;1926年,薛定谔基于量子性是微观体系波动性的反映这一认识,找到了微观体系的运动方程,从而建立起波动力学,其后不久还证明了波
21、动力学和矩阵力学的数学等价性;狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式,量子力学的理论形式,量子力学的三种形式:海森伯,矩阵描述。狄拉克,费米,路径积分形式。薛定谔,波动方程。通过不同的假设和理论线路创建并完善量子力学理论,得到的结果在数学上是等价的。相当于经典力学中,正则变换将一种理论形式转变为另外一种理论形式。,薛定谔对作用量函数的代换,薛定谔的波动量子力学从哈密顿-雅可比方程入手,对经典的作用量函数(特征函数)作变量代换:这个代换,从数学上讲没有任何问题,但这里很自然地引入了普朗克常数作为作用量函数的单位,而这个常数与玻尔的氢原子理论中的量子
22、化常数是相同的。,对氢原子模型的处理,对于氢原子模型,实际上就是经典力学中的开普勒问题,用经典力学的结果解释不了实际的氢原子。以氢原子为例,可以让我们了解如何从经典力学过渡到量子力学的。哈密顿-雅可比方程变为:,薛定谔对方程的假设,事实上,薛定谔并不是直接求解此方程,而是认为该方程左端的空间积分的变分为0:利用对于连续体系积分的变分处理,可得到:,量子力学的物理量和算符,方程可改写为:与经典力学相比,哈密顿量成为算符,动量也成为算符:从经典力学的哈密顿-雅可比方程过渡到薛定谔方程,所产生的变化是:物理量成为算符,算符的次序不可交换性导致泊松括号的结果不为0,每个物理量都对波函数作用。,氢原子的
23、能量量子化,从氢原子方程求出的本征值E为:这个结果与玻尔的氢原子模型所得的完全相同。这说明当初预先假设氢原子的能量是量子化的是不必要的,而只是因为本征值是量子化的结果。如果对于另外一些方程的本征值可以取连续的值,则能量也是连续的。,一维谐振子的解,薛定谔方程示例:一维谐振子问题若有解,第21次课,刘维尔定理,相空间。由多个粒子构成的体系中,以广义坐标和广义动量为自变量构成的空间。又称为G空间,自变量(q1,.,q3n;p1,.,p3n)。代表点。系统处于某个初始坐标和动量,可用在相空间中一个代表点来表示。统计系综。对于相空间中的一群代表点作统计平均。刘维尔定理:相空间的代表点的统计系综的分布密
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 哈密顿力学 哈密 力学 PPT 课件
链接地址:https://www.31ppt.com/p-5482204.html