《压缩机结构原理》PPT课件.ppt
《《压缩机结构原理》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《压缩机结构原理》PPT课件.ppt(57页珍藏版)》请在三一办公上搜索。
1、,第一章:概述,什么是压缩机?用来压缩气体借以提高气体压力的机械称为压缩机。提升的压力小于0.2MPa时,称为鼓风机。提升压力小于0.02MPa时称为通风机。,压缩机的分类,按工作原理分类1容积式压缩机 直接对一可变容积中的气体进行压缩,使该部分气体容积缩小、压力提高。其特点是压缩机具有容积可周期变化的工作腔。2离心式压缩机 它首先使气体流动速度提高,即增加气体分子的动能;然后使气流速度有序降低,使动能转化为压力能,与此同时气体容积也相应减小。其特点是压缩机具有驱使气体获得流动速度的叶轮。,按排气压力分类,按压缩级数分类 单级压缩机 气体仅通过一次工作腔 或叶轮压缩 两级压缩机 气体顺次通过两
2、次工作 腔或叶轮压缩 多级压缩机 气体顺次通过多次工作 腔或叶轮压缩,相应通 过几次便是几 级压缩机,容积流量分类 名 称 容积流量(m3min)微型压缩机 1 小型压缩机 110 中型压缩机 10100 大型压缩机 100,压缩机按结构或工作特征的分类,活塞式,转子式,滑片式,单螺杆,几种特殊的压缩机,第二章 离心压缩机的工作原理及结构,气体由吸气室吸入,通过叶轮对气体做功,使气体压力、速度、温度提高。然后流入扩压器,使速度降低,压力提高。弯道和回流器主要起导向作用,使气体流入下一级继续压缩。最后,由末级出来的高压气体经涡室和出气管输出。由于气体在压缩过程中温度升高,而气体在高温下压缩,消耗
3、功将会增大,为了减少压缩耗功,故对压力较高的离心式压缩机在压缩过程中采用中间冷却器,即由某中间级出口的气体,不直接进入下一级,而是通过蜗室和出气管,引到外面的中间冷却器进行冷却,冷却后的低温气体,再经吸气室进入下级压缩。离心式压缩机零件很多,这些零件又根据它们的作用组成各种部件。我们把离心式压缩机中可以转动的零部件统称为转子,不能转动的零、部件称为静子。,转子,转子是离心压缩机的主要部件,它是由主轴、叶轮、平衡盘等组成的。一、叶轮 叶轮也称为工作轮,它是压缩机中最重要的一个部件。气体在叶轮叶片的作用下,跟着叶轮做高速的旋转。而气体由于受旋转离心力的作用以及在叶轮里的扩压流动,使气体通过叶轮后的
4、压力得到了提高。此外,气体的速度能也同样在叶轮里得到了提高。因此可以认为叶轮是使气体提高能量的唯一途径。叶轮是由轮盘、轮盖和叶片组成,这种叶轮称为闭式叶轮。按照工艺方法的不同,叶轮又可以分为铆接叶轮,焊接叶轮,铣制焊接叶轮和整体铸造叶轮。,二、主轴 主轴上安装所有的旋转零件,它的作用就是支持旋转零件及传递转矩。主轴的轴线也就确定了各旋转零件的几何轴线。主轴通常为阶梯轴,以便于零件的安装。各阶梯的突肩起轴向定位作用。也可采用光轴,因为它具有形状简单,加工方便的特点。,三、平衡鼓 在多级离心压缩机中,由于每级叶轮吸入口两侧的气体作用力的大小不等,使转子受到一个指向低压端的合力,这个合力称为轴向力。
5、轴向力对于压缩机的正常运转是不利的,它使转子向一端窜动。甚至使转子与机壳相碰,造成事故。因此要设法平衡(消除)它。平衡鼓就是利用它的两边气体压力差来平衡轴向力的零件。它位于高压端,它的一侧压力可以认为是末级叶轮轮盘侧 的间隙中的气体压力(高压)。另一侧通向大气或进气管,它的压力是大气压或进气压力(低压)。由于平衡盘也是用热套法套在主轴上。上述两侧压力差就使转子受到一个与轴向力反向的力。其大小决定于平衡盘的受力面积。通常,平衡鼓只平衡一部分轴向力。剩余的轴向力由止推盘(止推轴承)承受。平衡鼓的外缘安装气封,可以减少气体泄漏。,第2节 静子 静子中所有零件均不能转动,它是由机壳、扩压器、弯道、回流
6、器、蜗室和密封等组成。一、机壳 机壳也称为气缸、机壳是静子中最大的零件。它通常是用铸铁或铸钢浇铸出来的。对于高压离心压缩机,采用圆桶形锻钢机壳,以承受高压。吸气室、蜗壳也是机壳的一部分,它的作用是把气体均匀地引入叶轮,然后顺畅地导出机壳。吸气室内通常浇铸有分流肋,使气流更加均匀,也起到增加机壳刚性的作用。,二、扩压器 气体从叶轮流出时,它具有较高的流动速度,为了充分利用这部分速度能,常常在叶轮后面设置了流通面积逐渐扩大的扩压器,用以把速度能转化为压力能,以提高气体的压力。扩压器一般有无叶型、叶片型、直壁型扩压器等多种形式。三、弯道 在多级离心式压缩机中,气体欲进入下一级就必须拐弯,为此要采用弯
7、道。弯道是由机壳和隔板构成的弯环形通道空间。,四、回流器 回流器的作用是使气流按所需要的方向均匀地进入下一级。它由隔板和导流叶片组成。通常,隔板和导流叶片整体铸造在一起。隔板借销钉或外缘凸肩与机壳定位。五、蜗室 蜗室的主要目的是把扩压器后面或叶轮后面的气体汇集起来,把气体引导到压缩机外面去,使它流到气体输送管线或流到冷却器去进行冷却。此外,在汇集气体的过程中,在大多数情况下,由于蜗室外径的逐渐增大和通流截面的渐渐扩大,也对气流起到一定的降速扩压作用。,六、密封 密封有隔板密封、轮盖密封和轴端密封。密封的作用是防止气体在级间倒流及向外泄漏。为了防止通流部分中的气体在级向倒流,在轮盖处设有轮盖密封
8、。在隔板和转子之间设有隔板密封。这两种密封统称为内密封。为了减少和杜绝机器内部的气体向外泄漏,或外界空气向机器内部窜入,在机器端安置端密封。这种密封称为外密封。最常用的是迷宫密封,密封片为软金属制成,将它嵌入密封体内。由于密封片较软,当转子发生振动与密封片相碰时,密封片易磨损,而不致使转子损坏。密封的作用原理,是利用气流经过密封时的阻力来减少泄漏量。,第三节 段和级 正如前述,为了节省压缩机的耗功,压缩机常常有中间冷却器,中间冷却器把全部级分隔成几个段。在每段里,有一个或几个级,每个级是由一个叶轮及与其相配合的固定零件所构成。对于离心式压缩机级来说,从其基本结构上来看,它可以分为中间级和末级两
9、种。一、中间级 中间级由叶轮、扩压器、弯道和回流器等组成。气体经过中间级后将直接流到下一级去继续进行增压。在离心压缩机的每一段里,除了段中的最后一级外,都属于这种中间级。,二、末级 末级由叶轮、扩压器、蜗室等组成。气体经过这一级增压后将排出机外。流到冷却器进行冷却,或送往排气管道输出。对于这两种级的结构型式来说,叶轮是这两种级所共同具有的,只是在固定元件上有所不同。对于末级来说,它是以蜗室取代中间级的弯道和回流器,有时还取代了级中的扩压器。,压缩机轴向力的形成的原因,转子在运行过程中,叶轮两侧具有一定压力的气体介质,如图所示。从图中可以看出,Ds到D2面积上,轮盖与轮盘承受的压力大小相等,方向
10、相反,但di到Ds的环形面积上,轮盘后压力P2 P0,这样就形成了一个由轮盘向轮盖的力,这就是压缩机的轴向力。对于多级压缩机,转子总的轴向力为各叶轮轴向力的总和。,轴向力的平衡方法和原理,单级叶轮产生的轴向力由高压侧指向低压侧,若多级叶轮按顺序派了,如图2-13,显然这种排列方式转子的轴向力很大,如果采用2-14方式排列,则入口相反的叶轮产生一个相反的轴向力,可以互相平衡,叶轮对置排列,设置平衡盘,平衡盘一般多装在高压侧,外缘与缸体间设有迷宫密封,从而使高压侧的压力P2大于压缩机入口连接的低压侧的压力P1,该压差产生的轴向力,其方向与叶轮产生的轴向力相反,根据计算可最终确定平衡盘的尺寸。,轴向
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 压缩机结构原理 压缩机 结构 原理 PPT 课件
链接地址:https://www.31ppt.com/p-5476383.html