《压力的测量》PPT课件.ppt
《《压力的测量》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《压力的测量》PPT课件.ppt(155页珍藏版)》请在三一办公上搜索。
1、本章学习各种压力传感器的原理、应用。,2023/7/11,1,第四章 压力的测量,一、压力和差压 压力:垂直均匀作用在单位面积上的力(压强),2023/7/11,2,常用压力形式:绝对压力大气压力相对压力差压,第一节 压力的基本概念,二、压力的单位 国际单位为“帕斯卡”(牛顿/米2 N/m2),简称“帕”(Pa)。除此之外,工程界长期使用许多不同的压力计量单位。如“工程大气压”、“标准大气压”、“毫米汞柱”,气象学中还用“巴”(bar)和“托”为压力单位。,2023/7/11,3,第一节 压力的基本概念,压力单位转换对照表,2023/7/11,4,一、液柱式压力计 基于流体静力学原理,适用于低
2、压、负压或差压的测量。,2023/7/11,5,第二节 传统压力测量法,一般是采用充有水或水银等液体的玻璃U形管、单管或斜管进行压力测量的,其结构形式如图所示。,(1)U形管压力计(2)单管压力计(3)斜管压力计,二、弹性式压力表 当被测压力作用于弹性元件时,弹性元件便产生相应的弹性变形(即机械位移)。根据变形量的大小,可以测得被测压力的数值。弹性压力计的组成环节如图4-3所示:弹性元件是核心部分,其作用是感受压力并产生弹性变形,弹性元件采用何种形式要根据测量要求选择和设计;变换放大机构,其作用是将弹性元件的变形进行变换和放大;指示机构(如指针与刻度标尺)用于给出压力示值;调整机构用于调整零点
3、和量程。,图4-3 弹性压力计组成框图,(1)弹性元件 同样的压力下,不同结构、不同材料的弹性元件会产生不同的弹性变形。常用的弹性元件有弹簧管、波纹管、薄膜等,如表4-2所示。其中波纹膜片和波纹管多用于微压和低压测量;单圈和多圈弹簧管可用于高、中、低压或真空度的测量。,表4-2 弹性元件的结构和特性,弹性元件常用的材料有铜合金、弹性合金、不锈钢等,各适用于不同的测压范围和被测介质。通过各种传动放大机构直接指示被测压力值。这类直读式测压仪表有弹簧管压力计、波纹管差压计、膜盒式压力计等。,(2)弹簧管压力计 弹簧管式压力计是工业生产上应用很广泛的一种直读式测压仪表,以单圈弹簧管结构应用最多。其一般
4、结构如图4-4所示。被测压力由接口引入,使弹簧管自由端产生位移,通过拉杆使扇形齿轮逆时针偏转,并带动啮合的中心齿轮转动,与中心齿轮同轴的指针将同时顺时针偏转,并在面板的刻度标尺上指示出被测压力值。,图4-4 弹簧管压力计结构1-弹簧管;2-连杆;3-扇形齿轮;4-底座;5-中心齿轮;6-游丝;7-表盘;8-指针;9-接头;10-横断面;11-灵敏度调整槽,通过调整螺钉可以改变拉杆与扇形齿轮的接合点位置,从而改变放大比,调整仪表的量程。转动轴上装有游丝,用以消除两个齿轮啮合的间隙,减小仪表的变差。直接改变指针套在转动轴上的角度,就可以调整仪表的机械零点。弹簧管压力计结构简单,使用方便,价格低廉,
5、测压范围宽,应用十分广泛。一般弹簧管压力计的测压范围为-105109Pa;精确度最高可达0.1。,三、差动变压器 1.原理:将压力引起的位移变化转换成电感的变化。,螺管型差动变压器结构图,两个次级线圈反相串联,并且在忽略铁损、导磁体磁阻和线圈分布电容的理想条件下,其等效电路。,2.基本特性 根据差动变压器等效电路。当次级开路时,根据电磁感应定律,次级绕组中感应电势的表达式分别为,由于次级两绕组反相串联,且考虑到次级开路,则由以上关系可得,上式说明,当激磁电压的幅值U和角频率、初级绕组的直流电阻r1及电感L1为定值时,差动变压器输出电压仅仅是初级绕组与两个次级绕组之间互感之差的函数。只要求出互感
6、M1和M2对活动衔铁位移x的关系式,可得到螺线管式差动变压器的基本特性表达式。,输出电压的有效值为,分析,活动衔铁处于中间位置时,M1=M2=M,故,Uo=0,活动衔铁向上移动时,M1=M+M,M2=M-M,故,活动衔铁向下移动时,M1=M-M,M2=M+M,故,3.差动变压器式传感器测量电路 问题:(1)差动变压器的输出是交流电压(用交流电压表测量,只能反映衔铁位移的大小,不能反映移动的方向);(2)测量值中将包含零点残余电压。,衔铁位移x与电桥输出电压Uo有效值的关系曲线,如右图所示。虚线为理想特性曲线,实线为实际特性曲线,在零点总有一个最小的输出电压。一般把这个最小的输出电压称为零点残余
7、电压,并用e0表示。,零残电压过大带来的影响:灵敏度下降、非线性误差增大测量有用的信号被淹没,不再反映被测量变化造成放大电路后级饱和,仪器不能正常工作。,产生的原因:两电感线圈的等效参数不对称,减小零点残余电动势的方法:1.从制造工艺上减小残余电动势。2.选择利于消除残余电动势的测量电路。3.采用补偿电路,调整元件参数,消除残余电动势。,减小残余电动势的补偿电路,为了达到能辨别移动方向和消除零点残余电压的目的,实际测量时,常常采用差动整流电路和相敏检波电路。(1)差动整流电路 这种电路是把差动变压器的两个次级输出电压分别整流,然后将整流的电压或电流的差值作为输出。,从图(c)电路结构可知,不论
8、两个次级线圈的输出瞬时电压极性如何,流经电容C1的电流方向总是从2到4,流经电容C2的电流方向总是从6到8,故整流电路的输出电压为,(2)相敏检波电路 既能检出调幅波包络的大小,又能判别包络极性的检波电路称为相敏检波电路。相敏检波电路不仅能判别位移、具有较好的线性度,而且还能消除零点残余电压,故应用较为广泛。,2023/7/11,31,二极管全波相敏检波电路,图 电感式微压力变送器结构1-接头 2-膜盒 3-底座 4-线路板 5-差动变压器 6-衔铁 7-罩盒 8-插头 9-通孔,外部检测压力P由接头送入膜盒,在无压力时,膜盒处于初始状态,输出电压为零。当P加入时,膜盒产生位移变形,带动衔铁在
9、差动变压器线圈中移动,产生正比于压力的电压。,2023/7/11,33,电阻应变式压电式电容式扩散硅压阻式,第三节 压力传感器,2023/7/11,34,一、电阻应变片式传感器应变片结构金属丝式应变片金属箔式应变片测量电路应变式传感器应用,第三节 压力传感器,2023/7/11,35,2,3,4,1,电阻应变片结构示意图,b,l,(一)应变片的结构与材料 由敏感栅1、基底2、盖片3、引线4和粘结剂等组成。这些部分所选用的材料将直接影响应变片的性能。因此,应根据使用条件和要求合理地加以选择。,(1)敏感栅由金属细丝绕成栅形。电阻应变片的电阻值为60、120、200等多种规格,以120最为常用。应
10、变片栅长大小关系到所测应变的准确度,应变片测得的应变大小是应变片栅长和栅宽所在面积内的平均轴向应变量。,栅长,栅宽,2023/7/11,36,对敏感栅的材料的要求:应变灵敏系数大,并在所测应变范围内保持为常数;电阻率高而稳定,以便于制造小栅长的应变片;电阻温度系数要小;抗氧化能力高,耐腐蚀性能强;在工作温度范围内能保持足够的抗拉强度;加工性能良好,易于拉制成丝或轧压成箔材;易于焊接,对引线材料的热电势小。对应变片要求必须根据实际使用情况,合理选择。,(2)基底和盖片基底用于保持敏感栅、引线的几何形状和相对位置,盖片既保持敏感栅和引线的形状和相对位置,还可保护敏感栅。基底的全长称为基底长,其宽度
11、称为基底宽。,2023/7/11,37,(3)引线 是从应变片的敏感栅中引出的细金属线。对引线材料的性能要求:电阻率低、电阻温度系数小、抗氧化性能好、易于焊接。大多数敏感栅材料都可制作引线。,(4)粘结剂 用于将敏感栅固定于基底上,并将盖片与基底粘贴在一起。使用金属应变片时,也需用粘结剂将应变片基底粘贴在构件表面某个方向和位置上。以便将构件受力后的表面应变传递给应变计的基底和敏感栅。常用的粘结剂分为有机和无机两大类。有机粘结剂用于低温、常温和中温。常用的有聚丙烯酸酯、酚醛树脂、有机硅树脂,聚酰亚胺等。无机粘结剂用于高温,常用的有磷酸盐、硅酸、硼酸盐等。,优点:精度高,测量范围广 频率响应特性较
12、好 结构简单,尺寸小,重量轻 可在高(低)温、高速、高压、强烈振动、强磁场及核辐射和化学腐蚀等恶劣条件下正常工作 易于实现小型化、固态化 价格低廉,品种多样,便于选择,一、金属应变片式传感器 金属应变片式传感器的核心元件是金属应变片,它可将试件上的应变变化转换成电阻变化。,缺点:具有非线性,输出信号微弱,抗干扰能力较差,因此信号线需要采取屏蔽措施;只能测量一点或应变栅范围内的平均应变,不能显示应力场中应力梯度的变化等;不能用于过高温度场合下的测量。,各种电子秤,广泛应用于,2023/7/11,42,(二)应变片原理1、应变效应 当金属丝在外力作用下发生机械变形时,其电阻值将发生变化,这种现象称
13、为金属的电阻应变效应。设有一根长度为l、截面积为S、电阻率为的金属丝,其电阻R为 两边取对数,得等式两边取微分,得 电阻的相对变化;电阻率的相对变化;长度相对变化,用表示,=称为长度方向上的应变或轴向应变;截面积的相对变化。,2023/7/11,43,dr/r为金属丝半径的相对变化,即径向应变为r。,S=r 2,dS/S=2dr/r,r=,由材料力学知,将微分dR、d改写成增量R、,则,应变丝电阻的相对变化与金属丝的伸长或缩短之间存在比例关系。比例系数Ks称为应变灵敏系数。,2023/7/11,44,物理意义:单位应变引起的电阻相对变化。Ks由两部分组成:前一部分是(1+2),由材料的几何尺寸
14、变化引起,一般金属0.3,因此(1+2)1.6;后一部分为,电阻率随应变而引起的(称“压阻效应”)。对金属材料,以结构尺寸变化为主,则Ks 1+2;对半导体,Ks值主要由电阻率相对变化所决定。实验表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成正比。通常Ks在1.83.6范围内。,2023/7/11,45,(三)主要特性1.灵敏度系数金属应变丝的电阻相对变化与它所感受的应变之间具有线性关系,用灵敏度系数Ks表示。当金属丝做成应变片后,其电阻应变特性,与金属单丝情况不同。因此,须用实验方法对应变片的电阻应变特性重新测定。实验表明,金属应变片的电阻相对变化与应变在很宽的范围内均为线性关系。即
15、K为金属应变片的灵敏系数。注意,K是在试件受一维应力作用,应变片的轴向与主应力方向一致,且试件材料的泊松比为0.285的钢材时测得的。测量结果表明,应变片的灵敏系数K恒小于线材的灵敏系数Ks。原因:胶层传递变形失真,横向效应也是一个不可忽视的因素。,2023/7/11,46,丝绕式应变片敏感栅半圆弧形部分,b,O,l,r,r,dl,d,0,2.横向效应 金属应变片由于敏感栅的两端为半圆弧形的横栅,测量应变时,构件的轴向应变使敏感栅电阻发生变化,其横向应变r也将使敏感栅半圆弧部分的电阻发生变化(除了起作用外),应变片的这种既受轴向应变影响,又受横向应变影响而引起电阻变化的现象称为横向效应。,图为
16、 应变片敏感栅半圆弧部分的形状。沿轴向应变为,沿横向应变为r。,2023/7/11,47,若敏感栅有n根纵栅,每根长为l,半径为r,在轴向应变作用下,全部纵栅的变形视为L1半圆弧横栅同时受到和r的作用,在任一微小段长度d l=r d上的应变可由材料力学公式求得 每个圆弧形横栅的变形量l为纵栅为n根的应变片共有n-1个半圆弧横栅,全部横栅的变形量为,L1=n l,2023/7/11,48,应变片敏感栅的总变形为敏感栅栅丝的总长为L,敏感栅的灵敏系数为KS,则电阻相对变化为令 则 可见,敏感栅电阻的相对变化分别是和r作用的结果。,2023/7/11,49,当r=0时,可得轴向灵敏度系数同样,当=0
17、时,可得横向灵敏度系数横向灵敏系数与轴向灵敏系数之比值,称为横向效应系数H。即 由上式可见,r愈小,l愈大,则H愈小。即敏感栅越窄、基长越长的应变片,其横向效应引起的误差越小。,2023/7/11,50,3.机械滞后 应变片粘贴在被测试件上,当温度恒定时,其加载特性与卸载特性不重合,即为机械滞后。产生原因:应变片在承受机械应变后,其内部会产生残余变形,使敏感栅电阻发生少量不可逆变化;在制造或粘贴应变片时,如果敏感栅受到不适当的变形或者粘结剂固化不充分。,机械滞后值还与应变片所承受的应变量有关,加载时的机械应变愈大,卸载时的滞后也愈大。所以,通常在实验之前应将试件预先加、卸载若干次,以减少因机械
18、滞后所产生的实验误差。,2023/7/11,51,4.零点漂移和蠕变 对于粘贴好的应变片,当温度恒定时,不承受应变时,其电阻值随时间增加而变化的特性,称为应变片的零点漂移。产生原因:敏感栅通电后的温度效应;应变片的内应力逐渐变化;粘结剂固化不充分等。如果在一定温度下,使应变片承受恒定的机械应变,其电阻值随时间增加而变化的特性称为蠕变。一般蠕变的方向与原应变量的方向相反。产生原因:由于胶层之间发生“滑动”,使力传到敏感栅的应变量逐渐减少。这是两项衡量应变片特性对时间稳定性的指标,在长时间测量中其意义更为突出。实际上,蠕变中包含零漂,零漂是蠕变的一个特例。,2023/7/11,52,5.应变极限在
19、一定温度下,应变片的指示应变对测试值的真实应变的相对误差不超过规定范围(一般为10%)时的最大真实应变值。在图中,真实应变是由于工作温度变化或承受机械载荷,在被测试件内产生应力(包括机械应力和热应力)时所引起的表面应变。,主要因素:粘结剂和基底材料传递变形的性能及应变片的安装质量。制造与安装应变片时,应选用抗剪强度较高的粘结剂和基底材料。基底和粘结剂的厚度不宜过大,并应经过适当的固化处理,才能获得较高的应变极限。,2023/7/11,53,6.动态特性 当被测应变值随时间变化的频率很高时,需考虑应变片的动态特性。因应变片基底和粘贴胶层很薄,构件的应变波传到应变片的时间很短(估计约0.2s),故
20、只需考虑应变沿应变片轴向传播时的动态响应。设一频率为 f 的正弦应变波在构件中以速度 v 沿应变片栅长方向传播,在某一瞬时 t,应变量沿构件分布如图所示。,应变片对应变波的动态响应,0,应变片,1,l,x1,x,2023/7/11,54,设应变波波长为,则有=v/f。应变片栅长为L,瞬时t时应变波沿构件分布为 应变片中点的应变为 xt为t瞬时应变片中点的坐标。应变片测得的应变为栅长 l 范围内的平均应变m,其数值等于 l 范围内应变波曲线下的面积除以 l,即,2023/7/11,55,平均应变m与中点应变t相对误差为,由上式可见,相对误差e的大小只决定于 的比值,表中给出了为1/10和1/20
21、时e的数值。,2023/7/11,56,由表可知,应变片栅长与正弦应变波的波长之比愈小,相对误差愈小。当选中的应变片栅长为应变波长的(1/101/20)时,将小于2%。因为式中 应变波在试件中的传播速度;f应变片的可测频率。取,则若已知应变波在某材料内传播速度,由上式可计算出栅长为L的应变片粘贴在某种材料上的可测动态应变最高频率。,2023/7/11,57,(四)温度误差及其补偿1.温度误差 用作测量应变的金属应变片,希望其阻值仅随应变变化,而不受其它因素的影响。实际上应变片的阻值受环境温度(包括被测试件的温度)影响很大。由于环境温度变化引起的电阻变化与试件应变所造成的电阻变化几乎有相同的数量
22、级,从而产生很大的测量误差,称为应变片的温度误差,又称热输出。因环境温度改变而引起电阻变化的两个主要因素:应变片的电阻丝(敏感栅)具有一定温度系数;电阻丝材料与测试材料的线膨胀系数不同。,2023/7/11,58,设环境引起的构件温度变化为t()时,粘贴在试件表面的应变片敏感栅材料的电阻温度系数为t,则应变片产生的电阻相对变化为 由于敏感栅材料和被测构件材料两者线膨胀系数不同,当t 存在时,引起应变片的附加应变,其值为 e试件材料线膨胀系数;g敏感栅材料线膨胀系数。,相应的电阻相对变化为K应变片灵敏系数。,2023/7/11,59,温度变化形成的总电阻相对变化:相应的虚假应变为上式为应变片粘贴
23、在试件表面上,当试件不受外力作用,在温度变化t 时,应变片的温度效应。用应变形式表现出来,称之为热输出。可见,应变片热输出的大小不仅与应变计敏感栅材料的性能(t,g)有关,而且与被测试件材料的线膨胀系数(e)有关。,2023/7/11,60,2.温度补偿(自补偿法和线路补偿法)单丝自补偿应变片由前式知,若使应变片在温度变化t时的热输出值为零,必须使即 每一种材料的被测试件,其线膨胀系数 都为确定值,可以在有关的材料手册中查到。在选择应变片时,若应变片的敏感栅是用单一的合金丝制成,并使其电阻温度系数 和线膨胀系数 满足上式的条件,即可实现温度自补偿。具有这种敏感栅的应变片称为单丝自补偿应变片。,
24、单丝自补偿应变片的优点是结构简单,制造和使用都比较方便,但它必须在具有一定线膨胀系数材料的试件上使用,否则不能达到温度自补偿的目的。,2023/7/11,61,双丝组合式自补偿应变片是由两种不同电阻温度系数(一种为正值,一种为负值)的材料串联组成敏感栅,以达到一定的温度范围内在一定材料的试件上实现温度补偿的,如图。这种应变片的自补偿条件要求粘贴在某种试件上的两段敏感栅,随温度变化而产生的电阻增量大小相等,符号相反,即,(Ra)t=(Rb)t,补偿效果可达0.45。,2023/7/11,62,E,USC,R2,R4,R1,R3,桥路补偿法,当R3、R4为常数时,Rl和R2对输出电压的作用方向相反
25、。利用这个基本特性可实现对温度的补偿,并且补偿效果较好,这是最常用的补偿方法之一。,电路补偿法 如图,电桥输出电压与桥臂参数的关系为 式中A由桥臂电阻和电源电压E决定的常数。,2023/7/11,63,测量应变时,使用两个应变片,一片贴在被测试件的表面,图中R1称为工作应变片。另一片贴在与被测试件材料相同的补偿块上,图中R2,称为补偿应变片。在工作过程中补偿块不承受应变,仅随温度发生变形。由于R1与R2接入电桥相邻臂上,造成R1t与R2t相同,根据电桥理论可知,其输出电压USC与温度无关。当工作应变片感受应变时,电桥将产生相应输出电压。,2023/7/11,64,当被测试件不承受应变时,R1和
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 压力的测量 压力 测量 PPT 课件
链接地址:https://www.31ppt.com/p-5476245.html