《分子光谱分析》PPT课件.ppt
《《分子光谱分析》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《分子光谱分析》PPT课件.ppt(63页珍藏版)》请在三一办公上搜索。
1、1,第10章 分子光谱分析,王美娥烟台大学环境与材料工程学院,2,概 述,分子光谱是由分子能级跃迁而产生的光谱。分子吸收光谱分子荧光光谱,紫外-可见吸收光谱,红外吸收光谱,ultraviolet&visible absorption spectrum,UV-VIS,infrared absorption spectrum,IR,fluorescence spectrometry,FS,其吸收的辐射波长不同,聚合物材料中的颜料和紫外光稳定剂,官能团或化合物定性,发光材料,3,光谱分析法是基于物质对不同波长光的吸收、发射等现象而建立起来的一类光学分析法。光谱是光的不同波长成分及其强度分布按波长或波
2、数次序排列的记录,它描述了物质吸收或发射光的特征,可以给出物质的组成、含量以及有关分子、原子的结构信息。由原子的吸收或发射所形成的光谱称为原子光谱(atomic spectrum),原子光谱是线光谱。由分子的吸收或发光所形成的光谱称为分子光谱(molecular spectrum),分子光谱是带状光谱。,样品谱峰的数目、位置、强度、形状等特点对材料进行定性和定量分析,4,10.1 紫外-可见吸收光谱法,紫外-可见光谱(UV-VIS)是电子光谱。UV-VIS是物质在吸收10800nm光波波长范围的光子所引起分子中电子能级跃迁时产生的吸收光谱。波长200nm的紫外光属于远紫外光,由于被空气所吸收,
3、故亦称真空紫外光。该波段的吸收光谱属于真空紫外光谱。一般紫外可见光谱的波长范围:200800(1000)nm。紫外可见吸收光谱分析法常称为紫外可见分光光度法。,5,10.1.1 基本原理,分子吸收光谱的形成,分子,甚至是最简单的双原子分子的光谱,要比原子光谱复杂得多。这是由于在分子中,除了电子相对于原子核的运动外,还有组成分子的原子的原子核之间相对位移引起的分子振动和转动。分子中的电子处于相对于核的不同运动状态就有不同的能量,处于不同的转动运动状态代表不同的能级,即有电子能级、振动能级和转动能级。分子总的能量可以认为是这三种运动能量之和。即 E Ee+Ev+Er,6,M+hvM*,7,当分子吸
4、收外界的辐射能量时,会发生运动状态的变化,亦即发生能级的跃迁,其中含电子能级、振动能量和转动能量的跃迁。所以整个分子能量的变化E同样包含着电子能级的变化Ee,振动能级的变化Ev和转动能级的变化Er:,E Ee+Ev+Er,若用一连续波的电磁辐射以波长大小顺序分别照射分子,并记录物质分子对辐射吸收程度随辐射波长变化的关系曲线,这就是分子吸收曲线,通常叫分子吸收光谱。,E hv,8,电子能级跃迁时不可避免地会产生振动和转动能级间的跃迁。即电子光谱中总包含有振动能级和转动能级间跃迁,因而产生的谱线呈现宽谱带。紫外可见光谱实际上是电子-振动-转动光谱。,将不同波长的光(200-780nm)透过某一固定
5、浓度和厚度的溶液,测量每一波长下溶液对光的吸收程度(吸光度),而后以波长为横坐标,以吸光度为纵坐标,即可得吸收光谱。,9,分子在紫外-可见区的吸收与电子结构紧密相关,物质由于电子结构不同而具有不同的量子化能级,所以所能吸收光的波长也不同(对光的吸收具有选择性),这是UV-Vis定性分析的基础。,10,吸光度最大处对应的波长称为最大吸收波长max max和是定性的主要依据 吸收曲线可以提供物质的结构信息,并作为物质定性分析的依据之一。,11,2.溶液的吸收定律-朗伯-比尔定律,一束平行电磁辐射,强度为I0,穿过厚度为b、浓度为C的透明介质溶液后,由于介质中粒子对辐射的吸收,结果强度衰减为I,则溶
6、液透光率T(%)表示为T=I/I0溶液的吸光度A由下式定义A=-lgTlg(I0/I)吸光度与吸收层厚度(b)及被测物质浓度C之关系由朗伯-比耳定律表达,即 A=bC式中,称为吸收系数。,(1)朗伯-比尔定律,UV-Vis光谱定量分析的依据,12,(2)偏离朗伯-比尔定律的因素,主要有3个方面:第一,非单色光引起的偏离(仪器偏差)。主要来自光的单色性、平行性和散射性等因素造成的偏差。第二,介质不均匀引起的偏离(比尔定律本身的局限性),朗伯-比尔定律主要适用于稀溶液,忽略了分子之间的相互作用,当浓度高时,分子间作用增强会引起偏差。第三,溶液本身的化学反应引起的偏离(化学偏离)。当被分析的粒子发生
7、分解、缔合或与溶剂发生反应生成一种具有不同光谱的产物时会发生这种偏离;,13,3.分子结构与吸收光谱,分子中电子跃迁示意图,(1)有机物的跃迁类型,14,相应的外层电子和价电子有三种:电子、电子和n 电子。通常情况下,电子处于低的能级(成键轨道和非键轨道)。当用合适能量的紫外光照射分子时,分子可能吸收光的能量,而又低能级跃迁到反键*轨道。在紫外可见光区,主要有下列几种跃迁类型:,15,吸收波长在真空紫外区。饱和烃无一例外地都含有电子,它们的电子光谱都在远紫外区。,-*跃迁,吸收波长在150250nm范围,绝大多数吸收峰出现在200nm左右。含有未共享电子对杂原子(O、N、S和卤素等)的饱和烃衍
8、生物可发生此类跃迁。这种跃迁所需的能量主要取决于原子成键的种类,而与分子结构关系不大;摩尔吸收系数()比较低,即吸收峰强度比较小,很少在近紫外区观察到。,n-*跃迁,16,一些化合物n-*跃迁所产生吸收的数据,17,n-*和-*跃迁,吸收波长在200700nm范围。绝大多数有机分子的吸收光谱都是由n电子或电子向*激发态跃迁产生的。这两种跃迁都要求分子中存在具有轨道的不饱和基团,这种不饱和的吸收中心称做生色基团(简称生色团)。n-*跃迁产生的光谱峰的摩尔吸收系数一般较低,通常在10100范围内,而-*跃迁的摩尔吸收系数一般在100010000范围内。,18,19,(2)无机物的跃迁类型,电荷转移
9、跃迁 在电磁辐射作用下,分子中原定域在金属轨道上的电荷转移到配位体的轨道,或按相反方向转移,称为电荷转移跃迁。所产生的吸收光谱称为电荷转移光谱。一般可表示为:Mn+-Lb-M(n+1)+-L(b+1)-,h,20,过渡元素的d或f轨道为简并轨道,当与配位体配合时,轨道简并解除,d或f轨道发生能级分裂。如果轨道未充满,则低能量轨道上的电子吸收外来能量时,将会跃迁到高能量的d或f轨道,从而产生吸收光谱。多用于研究配合物结构及其键合理论。,配位体场跃迁,21,(3)常用术语,生色团,能吸收紫外-可见光的基团叫生色团。主要为具有不饱和键和未成对电子的基团。例:,助色团 助色团是一种能使生色团的吸收峰向
10、长波方向位移并增强其吸收强度的官能团,一般是含有未共享电子的杂原子基团,如-NH2、-OH、-NR2、-OR、-SH、-SR、-Cl、-Br等。这些基团中的 n电子能与生色团中的电子相互作用(可能产生p-共轭),使-*跃迁能量降低,跃迁几率变大。,22,红移、蓝移 吸收峰位置向长波方向的移动,叫红移。吸收峰位置向短波方向移动,叫蓝移 增色效应和减色效应波长不变 使吸收强度增加的现象称为增色效应。使吸收强度降低的现象称为减色效应,23,10.1.2 分光光度计-测定吸光度,分光光度计的基本组成基本结构是由五个部分组成:即光源、单色器、吸收池、检测器和显示装置。,2.分光光度计的类型,(1)单波长
11、分光光度计,24,(2)单波长双光束分光光度计,25,(3)双波长分光光度计,26,10.1.3 紫外-可见吸收光谱应用,一般采用液体样品,也可以用固体样品。一、定性分析利用紫外与可见光谱的定性分析主要是依据这些化合物的吸收光谱的特征,如吸收光谱曲线形状、吸收峰数目以及各吸收峰的波长位置和相应的摩尔吸光系数。其中最大和的主要参数。总体上来说,紫外可见光谱在定性分析上应用并不广泛。,(1)已知化合物的验证(2)判断互变异构和立体异构,(3)纯度检查(4)能级结构的确定,27,二、定量分析,分光光度法,依据是朗珀-比尔定律,(1)单组份定量分析,分析条件的选择,溶剂,测定浓度,测定波长,定量分析方
12、法,标准曲线,标准加入,(2)多组分定量分析,(3)络合物结合比的测定,28,10.2 分子荧光光谱法,分子荧光光谱(FS)也是电子光谱,但它属于二次发射光谱(光致发光),是几种发光分析方法(如磷光、化学发光、生物发光、热致发光等)中的一种。分子荧光的发射至少有两个步骤:吸收激发光过程和后继的发射过程。发光分析方法的特点:优点为:选择性好,灵敏度高(检测限比吸收光谱小13个数量级)和具有较大的线性浓度范围。缺点:不如吸收光谱应用广泛。主要是由于能够产生荧光辐射的化学(分子)体系的数量有限。,29,应 用,无机荧光分析方法有两种类型:直接法:先形成荧光鳌合物,然后测量其荧光发射光谱图。主要应用于
13、阳离子分析(主要是非过渡金属)。另一种方法:基于被测物质的淬灭作用引起的荧光减少效应。广泛应用于阴离子分析。有4种常用的鳌合剂:苯偶姻、茜素石榴红R、黄烷酮醇、8-羟基喹啉。有机荧光分析:可分析100多类物质,如腺膘呤、氨茴酸、芳香多环碳氢化合物、半光氨酸、胍、吲哚、萘酚、蛋白质、水杨酸及尿酸等;医药试剂分析方面:有50多类例如,肾上腺素、烷基吗啡、氯奎、青雷素、普鲁卡因、利血平及本巴比妥等;还包括甾类化合物和酶、辅酶等;在植物制品方面,包括叶绿素、萝芙藤螺旋生物碱、黄烷酮类及鱼藤酮类等;还包括维他命及维他命制品等,以及食品和天然产品的分析。,30,10.3 红外吸收光谱法,红外吸收光谱(In
14、frared absorption spectroscopy,IR)又称为分子振动转动光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系的曲线,就得到红外光谱。,31,短波,长波,红外吸收光谱(IR)是分子振动光谱,它对电磁辐射波数的响应范围在1280010cm-1(即波长范围:0.781000m)。大多数红外吸收光谱仪在中红外区应用,波数范围在4000400cm-1,波数大于4000cm-1为近红外,小于200cm
15、-1为远红外区。振动光谱所涉及的是分子中原子间化学键振动而引起的能级跃迁的检测。振动频率对分子中特定基团表现出高度的特征性。除光学异构体外,每一种化合物都有自己的红外吸收光谱。,32,红外光区的划分,习惯上按红外线波长,将红外光谱分成三个区域:(1)近红外区:0.782.5m(128204 000cm-1),主要用来研究O-H、N-H及C-H键的倍频吸收。(2)中红外区:2.525m(4 000400cm-1),最为有用,分子的振动能级跃迁。(3)远红外区:25300m(40033cm-1),分子的纯转动能级跃迁和晶体的晶格振动。其中,中红外区是研究和应用最多的区域,通常说的红外光谱就是指中红
16、外区的红外吸收光谱。红外光谱除用波长表征横坐标外,更常用波数(wave number)表征。纵坐标为百分透射比T%。,33,红外光谱的形成机理,当用一束具有连续波长的红外光照射一物质时,该物质就要吸收一部分光能,并将其变为另一种能量,即分子的振动能量和转动能量。若将其透过的光用单色器进行色散,就可以得到一带暗条的谱带。如果以波长或波数为横坐标,以吸光度或透过率为纵坐标,把这谱带记录下来,就得到了该物质的红外(吸收)光谱图。,34,产生红外吸收的条件 红外光谱是由于分子振动能级(同时伴随转动能级)跃迁而产生的,物质吸收红外辐射应满足两个条件:(1)辐射光具有的能量与发生振动跃迁时所需的能量相等;
17、(2)辐射与物质之间有偶合作用。,35,红外光谱选律,量子学说指出,并非任意两能级间都能进行跃迂,这种跃迁需要遵循一定的规律,即所谓选律。对于红外光谱来说,二个能级间电偶极改变不为零方能发生。实际分子的吸收光谱相当复杂,它们不是呈线状条纹,而是以吸收带的形式出现,这是因为分子运动本身很复杂的缘故。,36,10.3.2 红外光谱吸收仪,红外光谱仪发展史,37,色散型红外分光光度计,双光束色散型红外分光光度计由五部分组成:1)光源,2)单色器,3)检测器,4)电子放大器和5)记录显示装置。下图为色散型双光束红外分光光度计方块图,38,傅里叶变换红外光谱仪(FTIR),右图为色散型和FTIR获得图谱
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分子光谱分析 分子 光谱分析 PPT 课件
链接地址:https://www.31ppt.com/p-5469980.html