《偏心距增大系数》PPT课件.ppt
《《偏心距增大系数》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《偏心距增大系数》PPT课件.ppt(43页珍藏版)》请在三一办公上搜索。
1、,偏心距增大系数,,,,,取h=1.1h0,第六章 受压构件,l0,第六章 受压构件,有侧移结构,其二阶效应主要是由水平荷载产生的侧移引起的。精确考虑这种二阶效应较为复杂,一般需通过考虑二阶效应的结构分析方法进行计算。由于混凝土结构开裂的影响,在考虑二阶效应的结构分析时应将结构构件的弹性抗弯刚度乘以折减修正系数:对梁取修正系数0.4,对柱取修正系数0.6。,对已采用考虑二阶效应的弹性分析方法确定结构内力时,以下受压构件正截面承载力计算公式中的hei应用(M/N+ea)代替。,第六章 受压构件,6.6 矩形截面正截面承载力计算,一、不对称配筋截面设计1、大偏心受压(受拉破坏),已知:截面尺寸(b
2、h)、材料强度(fc、fy,fy)、构件长细比(l0/h)以及轴力N和弯矩M设计值,若heieib.min=0.3h0,一般可先按大偏心受压情况计算,As和As均未知时,两个基本方程中有三个未知数,As、As和 x,故无唯一解。与双筋梁类似,为使总配筋面积(As+As)最小?可取x=xbh0得,若As0.002bh?则取As=0.002bh,然后按As为已知情况计算。,若Asrminbh?应取As=rminbh。,第六章 受压构件,As为已知时,当As已知时,两个基本方程有二个未知数As 和 x,有唯一解。先由第二式求解x,若x 2a,则可将代入第一式得,若x xbh0?,若As若小于rmin
3、bh?应取As=rminbh。,第六章 受压构件,则应按As为未知情况重新计算确定As,则可偏于安全的近似取x=2a,按下式确定As,若x2a?,As为已知时,当As已知时,两个基本方程有二个未知数As 和 x,有唯一解。先由第二式求解x,若x 2a,则可将代入第一式得,若x xbh0?,若As若小于rminbh?应取As=rminbh。,第六章 受压构件,则应按As为未知情况重新计算确定As,则可偏于安全的近似取x=2a,按下式确定As,若x2a?,As为已知时,当As已知时,两个基本方程有二个未知数As 和 x,有唯一解。先由第二式求解x,若x 2a,则可将代入第一式得,若x xbh0?,
4、若As若小于rminbh?应取As=rminbh。,若As若小于rminbh?应取As=rminbh。,第六章 受压构件,则应按As为未知情况重新计算确定As,则可偏于安全的近似取x=2a,按下式确定As,若x2a?,2、小偏心受压(受压破坏)heieib.min=0.3h0,两个基本方程中有三个未知数,As、As和x,故无唯一解。,小偏心受压,即x xb,ss-fy,则As未达到受压屈服因此,当xb x(2b-xb),As 无论怎样配筋,都不能达到屈服,为使用钢量最小,故可取As=max(0.45ft/fy,0.002bh)。,第六章 受压构件,另一方面,当偏心距很小时,如附加偏心距ea与荷
5、载偏心距e0方向相反,则可能发生As一侧混凝土首先达到受压破坏的情况。此时通常为全截面受压,由图示截面应力分布,对As取矩,可得,,e=0.5h-a-(e0-ea),h0=h-a,第六章 受压构件,确定As后,就只有x 和As两个未知数,故可得唯一解。根据求得的x,可分为三种情况,若x(2b-xb),ss=-fy,基本公式转化为下式,,若x h0h,应取x=h,同时应取a=1,代入基本公式直接解得As,第六章 受压构件,重新求解x 和As,由基本公式求解x 和As的具体运算是很麻烦的。迭代计算方法用相对受压区高度x,,在小偏压范围x=xb1.1,,第六章 受压构件,对于级钢筋和C50混凝土,a
6、s在0.40.5之间,近似取0.45,as=x(1-0.5x)变化很小。,As(1)的误差最大约为12%。如需进一步求较为精确的解,可将As(1)代入基本公式求得x,,第六章 受压构件,取as=0.45,试分析证明上述迭代是收敛的,且收敛速度很快。,二、不对称配筋截面复核,在截面尺寸(bh)、截面配筋As和As、材料强度(fc、fy,f y)、以及构件长细比(l0/h)均为已知时,根据构件轴力和弯矩作用方式,截面承载力复核分为两种情况:1、给定轴力设计值N,求弯矩作用平面的弯矩设计值M,第六章 受压构件,2、给定轴力作用的偏心距e0,求轴力设计值N,1、给定轴力设计值N,求弯矩作用平面的弯矩设
7、计值M由于给定截面尺寸、配筋和材料强度均已知,未知数?只有x和M两个。,若N Nb,为大偏心受压,,若N Nb,为小偏心受压,,由(a)式求x以及偏心距增大系数h,代入(b)式求e0,弯矩设计值为M=N e0。,第六章 受压构件,2、给定轴力作用的偏心距e0,求轴力设计值N,若heie0b,为大偏心受压,未知数为x和N两个,联立求解得x和N。,第六章 受压构件,若heie0b,为小偏心受压 联立求解得x和N,尚应考虑As一侧混凝土可能先压坏的情况,e=0.5h-a-(e0-ea),h0=h-a,另一方面,当构件在垂直于弯矩作用平面内的长细比l0/b较大时,尚应根据l0/b确定的稳定系数j,按轴
8、心受压情况验算垂直于弯矩作用平面的受压承载力上面求得的N 比较后,取较小值。,第六章 受压构件,三、对称配筋截面实际工程中,受压构件常承受变号弯矩作用,当弯矩数值相差不大,可采用对称配筋。采用对称配筋不会在施工中产生差错,故有时为方便施工或对于装配式构件,也采用对称配筋。对称配筋截面,即As=As,fy=fy,a=a,其界限破坏状态时的轴力为Nb=a fcbxbh0。,第六章 受压构件,因此,除要考虑偏心距大小外,还要根据轴力大小(N Nb)的情况判别属于哪一种偏心受力情况。,1、当heieib.min=0.3h0,且N Nb时,为大偏心受压 x=N/a fcb,若x=N/a fcb2a,可近
9、似取x=2a,对受压钢筋合力点取矩可得,e=hei-0.5h+a,第六章 受压构件,2、当heieib.min=0.3h0,为小偏心受压 或heieib.min=0.3h0,但N Nb时,为小偏心受压,由第一式解得,代入第二式得,这是一个x 的三次方程,设计中计算很麻烦。为简化计算,如前所说,可近似取as=x(1-0.5x)在小偏压范围的平均值,,代入上式,第六章 受压构件,由前述迭代法可知,上式配筋实为第二次迭代的近似值,与精确解的误差已很小,满足一般设计精度要求。对称配筋截面复核的计算与非对称配筋情况相同。,6.5 工形截面正截面承载力计算(自学),第六章 受压构件,四、Nu-Mu相关曲线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 偏心距增大系数 偏心 增大 系数 PPT 课件
链接地址:https://www.31ppt.com/p-5464733.html