《偏导数与高阶导数》PPT课件.ppt
《《偏导数与高阶导数》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《偏导数与高阶导数》PPT课件.ppt(48页珍藏版)》请在三一办公上搜索。
1、Chapter 2(2),偏导数与高阶偏导数,目的要求:,一.理解多元函数的偏导数的概念,二.熟练掌握求一阶和二阶偏导数的方法,重点:,一.一阶、二阶偏导数计算,三.熟练掌握偏导数在经济分析中的应用,二.偏导数的经济应用,与一元函数类似,二元函数关于自变量的变,数学上,人们将这种变化率称之为偏导数。,第二节 偏导数与高阶偏导数,而对另一个自变量求变化率。,我们可按实际需要,把其中的一个自变量视为常数,情况下,二元函数的自变量都是彼此无关的,,化率仍然是一个十分重要的概念。由于在通常的,所以,,繁,啦,!,烦,多元函数的偏导数是一元函数导数的推广,其计算往往是借用一元函数的导数计算公式和方法,但
2、实际计算往往较繁.在推广中有一些东西将起质的变化.我们通常介绍二元函数的情形,所得结果可以推广到更高元的函数中,一般不会遇到原则性问题.,第二节 偏导数与高阶偏导数,一、偏导数的定义及其计算,在西方经济学中,柯布-道格拉斯生产函,这里 为常数,,当劳动力投入不变时,产量对资本投入的变化率为,当资本投入不变时,产量对劳动力投入的变化率,该问题说明有时需要求二元函数在某个变量不变的条件下,,Q表示产量.,别表示投入的劳动力数量和资本数量,,分,数为,引例,对另一个变量的变化率.,第二节 偏导数与高阶偏导数,(1)函数的偏改变量(偏增量),及,第二节 偏导数与高阶偏导数,第二节 偏导数与高阶偏导数,
3、(2)函数的全改变量(全增量),或,第二节 偏导数与高阶偏导数,2.偏导数概念,设函数 z=f(x,y)在点(x0,y0)的某一邻域内有定义,则称此极限值为z=f(x,y)在点(x0,y0)处对x的,记为,一元函数导数,如果极限存在,函数有增量,相应,(1)定义,当y 固定在y0,而 x 在x0 处有增量x时,偏导数.,第二节 偏导数与高阶偏导数,即,类似地,函数z=f(x,y)在点(x0,y0)处对y的偏导数为,也可记为,变量 x 和 y 的偏导数均存在,则称函数,在点,可偏导.,2.偏导数概念,内可偏导.,处均可偏导,与一元函数的情况类似,函数在区域上的偏导数构成一个偏导函数,(2)二元函
4、数的偏导函数(偏导数),分别记作,函数在区域上的偏导数.,一般仍称为,第二节 偏导数与高阶偏导数,偏导数的概念可以推广到二元以上的多元函数.,如函数 在 处,第二节 偏导数与高阶偏导数,注意!,全导数,第二节 偏导数与高阶偏导数,函数导数的定义进行的:,实质上是,2.偏导数的计算,忘记了,请赶快复习一下.,如果一元函数的求导方法和公式,2.偏导数的计算,多元函数的偏导数的计算方法,没有任何技术性的新东西.,求偏导数时,只要将 n 个自变量,中的某一个看成变量,自变量均视为常数,的求导方法进行计算即可.,方法:,其余的 n1个,然后按一元函数,2.偏导数的计算,将 y 看成常数时,将 x 看成常
5、数时,解,是对幂函数求导.,是对指数函数求导.,例1 求函数 的偏导数.,2.偏导数的计算,例2 求函数 的偏导数.,例2 求函数 的偏导数.,解,2.偏导数的计算,例3 求函数 在点(1,3)处对x 和 y 的偏导数.,例3 求函数 在点(1,3)处对x 和 y 的偏导数.,解,将点(1,3)代入上式,得,可得,所以,在求定点处的导数时,,先代入固定变量取值,,然后再求导,可简化求导计算。,2.偏导数的计算,或,例4 设,求,解,所以,二元以上多元函数的偏导数可类似地定义和计算,例 求函数 的偏导数.,对x求偏导数就是视y,z为常数,对x求导数,同理,因为,解,2.偏导数的计算,例5,解,求
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 偏导数与高阶导数 导数 PPT 课件
链接地址:https://www.31ppt.com/p-5464713.html