《假设检验续》PPT课件.ppt
《《假设检验续》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《假设检验续》PPT课件.ppt(37页珍藏版)》请在三一办公上搜索。
1、第九讲 假设检验(续),一、一致最优功效检验,(一)单边假设检验,(二)双边假设检验,二、一致最优功效无偏检验,一、一致最优功效检验,设统计模型为,,考虑检验问题,对这个一般的假设检验问题给出最优检验的定,义如下:,定义9.1,在检验问题(7)中,,的检验,,有,不等式,简记为UMPT。,对所有的 都成立,,对复合假设检验而言,,UMPT的存在性不,但与总体的分布有关,,而且与所考虑的假设检,验问题有关。,为了说明问题,,我们先看下面两个,例子。,例9.1,的简单样本。,求检验问题,解,由例8.1可知,,检验问题,水平为 的最优功效检验具有拒绝域,或检验函数,它显然也,是检验问题(9)的水平为
2、 的检验。,又由于,是检验问题(9)的水平为 的MPT,,所以对任意,给定的,有,都有,由此例可知对简单原假设对简单备择假设检,如果MPT不依赖于备择假设的参数,,验问题,,则,可适当扩大备择假设,,并由MPT获得UMPT。,这,扩大了N-P引理的应用范围。,例9.2,的简单样本,,试证明检验问题,证明,反证法,假设所考虑检验问题的水平为,的UMPT是,,有,则对任何水平为 的检验,因此有,特别地,,根据N-P引理知 具体,表示式为,此时MPT 的功效为,由分布函数的非减性知,,单调增函数,,这与(9)矛盾,,故结论成立。,我们将N-P引理应用这个例子,,对检验问题,而对检验问题,这说明对检验
3、问题,相应MPT的拒绝域与备择假设有关,,因此一致,最优功效检验(UMPT)就不一定存在。,那么在什,么情况下UMPT存在?,若存在,如何来求?,为,了方便我们将检验问题分成单边检验问题和双边,检验问题:,双边检验问题,并分别进行讨论。,(一)单边假设检验,从例9.1可知,,在有些情况下,,关于单边假设检,验问题,存在,UMPT。,但一般来说对单边检验问题,,由于MPT,依赖于参数的备选值,,所以UMPT可以不存在。,那么在什么情况下UMPT存在及如何求呢?,我们,有下面的判断定理。,定理9.1,率)是单参数的并可表示为,函数,,则对单边检验问题,(1),其检验函数为,水平为 的UMPT存在,
4、,(10),其中常数 和 有下式确定,(2),的增函数。,注意:,有关这个定理的详细证明可参看Bickel P.J.,Mathematical Statistics-Basic Ideas and Selected Topics,(1),的确定方法可参看N-P引理的注。,如果定理中的 是 的严格单减函数,,则,定理的结论同样成立,,只需要将(10)中的不,等号改变方向。,(2),(3),对假设检验问题,则定理8.1的结论全部成立。,(4),对假设检验问题,和假设检验问题,可以分别化为假设检验问题,同样可以使用定理8.1来求UMPT。,和假设检验问题,例9.3,分布,,设某种设备的寿命服从参数为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 假设检验续 假设检验 PPT 课件
链接地址:https://www.31ppt.com/p-5464701.html