Stata软件之回归分析解析.ppt
《Stata软件之回归分析解析.ppt》由会员分享,可在线阅读,更多相关《Stata软件之回归分析解析.ppt(39页珍藏版)》请在三一办公上搜索。
1、计量经济软件应用,Stata软件实验之一元、多元回归分析,内容概要,一、实验目的二、简单回归分析的Stata基本命令三、简单回归分析的Stata软件操作实例四、多元回归分析的Stata基本命令五、多元回归分析的Stata软件操作实例,一、实验目的:掌握运用Stata软件进行简单回归分析以及多元回归分析的操作方法和步骤,并能看懂Stata软件运行结果。,二、简单回归分析的Stata基本命令,简单线性回归模型(simple linear regression model)指只有一个解释变量的回归模型。如:其中,y 为被解释变量,x 为解释变量,u 为随机误差项,表示除 x 之外影响 y 的因素;称
2、为斜率参数或斜率系数,称为截距参数或截距系数,也称为截距项或常数项。简单线性回归模型的一种特殊情况:即假定截距系数 时,该模型被称为过原点回归;过原点回归在实际中有一定的应用,但除非有非常明确的理论分析表明,否则不宜轻易使用过原点回归模型。,二、简单回归分析的Stata基本命令,regress y x 以 y 为被解释变量,x 为解释变量进行普通最小二乘(OLS)回归。regress命令可简写为横线上方的三个字母reg。regress y x,noconstanty 对 x 的回归,不包含截距项(constant),即过原点回归。predict z 根据最近的回归生成一个新变量 z,其值等于每
3、一个观测的拟合值(即)。predict u,residual根据最近的回归生成一个新变量 u,其值等于每一个观测的残差(即)。,三、简单回归分析的Stata软件操作实例,实验 1 简单回归分析:教育对工资的影响 劳动经济学中经常讨论的一个问题是劳动者工资的决定。不难想象,决定工资的因素有很多,例如能力、性别、工作经验、教育水平、行业、职业等。在这里仅考虑其中一种因素:教育水平,建立如下计量模型:其中,wage 为被解释变量,表示小时工资,单位为元;edu为解释变量,表示受教育年限,即个人接受教育的年数,单位为年;u为随机误差项。假定模型(3.1)满足简单回归模型的全部5条基本假定,这样 的OL
4、S估计量 将是最佳线性无偏估计量。请根据表S-2中给出的数据采用Stata软件完成上述模型的估计等工作。,三、简单回归分析的Stata软件操作实例,1、打开数据文件。直接双击“工资方程1.dta”文件;或者点击Stata窗口工具栏最左侧的Open键,然后选择“工资方程1.dta”即可;或者先复制Excel表S-2中的数据,再点击Stata窗口工具栏右起第4个Data Editor键,将数据粘贴到打开的数据编辑窗口中,然后关闭该数据编辑窗口,点击工具栏左起第二个Save键保存数据,保存时需要给数据文件命名。2、给出数据的简要描述。使用describe命令,简写为:des 得到以下运行结果;,三、
5、简单回归分析的Stata软件操作实例,结果显示“工资方程1.dta”数据文件包含1225个样本和11个变量;11个变量的定义及说明见第3列。,三、简单回归分析的Stata软件操作实例,3、变量的描述性统计分析。对于定量变量,使用summarize命令:su age edu exp expsq wage lnwage,得到以下运行结果,保存该运行结果;第1列:变量名;第2列:观测数;第3列:均值;第4列:标准差;第5列:最小值;第6列:最大值。,三、简单回归分析的Stata软件操作实例,4、wage对edu的OLS回归。使用regress命令:reg wage edu,得到以下运行结果,保存该运
6、行结果;(1)表下方区域为基本的回归结果。第1列依次为被解释变量wage,解释变量edu,截距项constant;第2列回归系数的OLS估计值;第3列回归系数的标准误;第4列回归系数的 t 统计量值;写出样本回归方程为:即如果受教育年限增加1年,平均来说小时工资会增加0.39元。,三、简单回归分析的Stata软件操作实例,(2)表左上方区域为方差分析表。第2列从上到下依次为回归平方和(SSE)、残差平方和(SSR)和总离差平方和(SST);第3列为自由度,分别为k=1,n-k-1=1225-1-1=1223,n-1=1225-1=1224;第4列为均方和(MSS),由各项平方和除以相应的自由度
7、得到。(3)表右上方区域给出了样本数(Number of obs)、判定系数(R-squared)、调整的判定系数(Adj R-squared)、F统计量的值、回归方程标准误或均方根误(Root MSE,或 S.E.)以及其他一些统计量的信息。上述回归分析的菜单操作实现:StatisticsLinear models and relatedLinear regression弹出对话框,在Dependent Variable选项框中选择或键入wage,在Independent Variables选项框中选择或键入edu点击OK即可,三、简单回归分析的Stata软件操作实例,5、生成新变量 z 为
8、上一个回归的拟合值,生成新变量 u 为上一个回归的残差;然后根据 u 对数据进行从小到大的排序,并列出 u 最小的5个观测。命令如下:predict z(生成拟合值)predict u,residual(生成残差)sort u(根据 u 对数据从小到大排序)list wage z u in 1/5(列出 u 最小的5个观测值以及对应的实际样本观测值和拟合值)即对于观测 1,小时工资的实际观测值(wage)为2.46,拟合值(z)为9.10,残差(u)为-6.64。,三、简单回归分析的Stata软件操作实例,6、画出以wage为纵轴,以edu为横轴的散点图,并加入样本回归线。命令如下:graph
9、 twoway lfit wage edu|scatter wage edu得到以下运行结果,保存该运行结果;,三、简单回归分析的Stata软件操作实例,7、wage对edu的OLS回归,只使用年龄小于或等于30岁的样本。命令如下:reg wage edu if age=30得到以下运行结果,保存该运行结果;写出样本回归方程为:对于年龄在30岁及以下的劳动者,增加 1 年受教育年限使得工资会增加0.41元,略高于针对全体样本的估计值。,三、简单回归分析的Stata软件操作实例,8、wage对edu的OLS回归,不包含截距项,即过原点回归。命令如下:reg wage edu,noconstant
10、得到以下运行结果,保存该运行结果;,三、简单回归分析的Stata软件操作实例,9、取半对数模型。模型(3.1)假定增加 1 年受教育年限带来相同数量的工资增长;但美国经济学家明瑟(J.Mincer)等人的研究表明,更合理的情况是增加 1 年受教育年限导致相同百分比的工资增长。这就需要使用半对数模型(对数-水平模型),即:其中lnwage是小时工资的自然对数;斜率系数的经济含义是:增加 1 年受教育年限导致收入增长,该百分比值一般称为教育收益率或教育回报率(the rate of return to education)做lnwage对edu的回归,命令如下:reg lnwage edu 得到以
11、下运行结果,保存该运行结果(见下页);,三、简单回归分析的Stata软件操作实例,写出样本回归方程为:结果表明教育收益率的估计值为5.03%,即平均而言,增加 1 年受教育年限使得工资增长5.03%。,三、简单回归分析的Stata软件操作实例,10、最后可建立 do 文件把前面所执行过的命令保存下来。在do文件的编辑窗口中(点击Stata窗口工具栏右起第5个New Do-file Editor键即打开Stata的do文件编辑窗口)键入如下命令和注释,并保存为“工资方程1.do”文件。该文件的内容为:use“D:讲课资料周蓓的上课资料数据【重要】【计量经济学软件应用课件】10649289stat
12、a10工资方程1.dta“,clear/打开数据文件des/数据的简要描述su age edu exp expsq wage lnwage/定量变量的描述性统计reg wage edu/简单线性模型的OLS估计graph twoway lfit wage edu|scatter wage edu/作图reg wage edu if age=30/只使用年龄小于或等于30岁的样本进行OLS估计reg wage edu,noconstant/过原点回归reg lnwage edu/对数-水平模型,三、简单回归分析的Stata软件操作实例,实验 2 简单回归分析:学校投入对学生成绩的影响 表S-3记
13、录了一些学校某个年份高一学生的平均成绩及有关学校的其他一些信息。本实验主要考察学校的生均支出(expend)对学生数学平均成绩(math)的影响;生均支出代表了学校的经费投入水平,从理论上说,在其他条件不变的情况下,学生在生均支出越高的学校中能够获得更好的教学资源(包括更优秀的师资、更好的硬件设备等),从而学习成绩也应该越高。请根据表S-3中给出的数据采用Stata软件完成相关模型的估计等工作。1、打开数据文件。双击“学校投入与学生成绩.dta”文件,或点击Stata窗口工具栏Open键选择“学校投入与学生成绩.dta”即可;或复制Excel表S-3中的数据后点击Stata窗口工具栏Data
14、Editor键,将数据粘贴到数据编辑窗口中,关闭该窗口,点击工具栏Save键保存数据,保存时要给数据文件命名。,三、简单回归分析的Stata软件操作实例,2、假定生均支出(expend)与影响学生数学成绩的其他因素不相关,建立如下四个简单回归模型:水平-水平模型:水平-对数模型:对数-水平模型:对数-对数模型(常弹性模型):水平-水平模型的命令及运行结果如下:reg math expend估计结果表明:学校生均支出增加1千元,使得学生数学平均成绩将提高2.46分;,三、简单回归分析的Stata软件操作实例,水平-对数模型的命令及运行结果如下:reg math lnexpend估计结果:即学校生
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Stata 软件 回归 分析 解析
链接地址:https://www.31ppt.com/p-5449533.html