SPSS相关分析与回归分析.ppt
《SPSS相关分析与回归分析.ppt》由会员分享,可在线阅读,更多相关《SPSS相关分析与回归分析.ppt(70页珍藏版)》请在三一办公上搜索。
1、第八章 SPSS的相关分析和回归分析,主要内容,相关分析,线性回归分析,回归模型的检验,回归模型的适用性,非线性回归分析,概述,(一)相关关系(1)函数关系:(如:销售额与销售量;圆面积和圆半径.)是事物间的一种一一对应的确定性关系.即:当一个变量x取一定值时,另一变量y可以依确定的关系取一个确定的值(2)相关关系(统计关系):(如:收入和消费)事物间的关系不是确定性的.即:当一个变量x取一定值时,另一变量y的取值可能有几个.一个变量的值不能由另一个变量唯一确定,概述,相关关系的常见类型:线性相关:正线性相关、负线性相关非线性相关 相关关系不象函数关系那样直接,但却普遍存在,且有强有弱.如何测
2、度?,概述,(二)相关分析和回归分析的任务研究对象:相关关系相关分析旨在测度变量间线性关系的强弱程度.回归分析侧重考察变量之间的数量变化规律,并通过一定的数学表达式来描述这种关系,进而确定一个或几个变量的变化对另一个变量的影响程度.,相关分析,(一)目的 通过样本数据,研究两变量间线性相关程度的强弱.(例如:投资与收入之间的关系、GDP与通信需求之间的数量关系)(二)基本方法 绘制散点图、计算相关系数,绘制散点图,(一)散点图 将数据以点的形式绘制在直角平面上.比较直观,可以用来发现变量间的关系和可能的趋势.,绘制散点图,(二)基本操作步骤(1)菜单选项:graphs-scatter(2)选择
3、散点图类型:(3)选择x轴和y轴的变量(4)选择分组变量(set markers by):分别以不同颜色点的表示(5)选择标记变量(label case by):散点图上可带有标记变量的值(如:省份名称),计算相关系数,一、相关系数的作用:以精确的相关系数(r)体现两个变量间的线性关系程度.r:-1,+1;r=1:完全正相关;r=-1:完全负相关;r=0:无线性相关;|r|0.8:强相关;|r|0.3:弱相关,计算相关系数,二、关于相关系数的说明:相关系数只是较好地度量两变量间的线性相关程度,不能描述非线性关系.如:x和y的取值为:(-1,-1)(-1,1)(1,-1)(1,1)r=0 但 x
4、i2+yi2=2数据中存在极端值时不好如:(1,1)(2,2)(3,3),(4,4),(5,5),(6,1)r=0.33 但总体上表现出:x=y 应结合散点图分析,计算相关系数,三、相关系数的种类:1、简单线性相关系数(Pearson):针对定距定比数据.,计算相关系数,2、Spearman相关系数:用来度量定序或定类变量间的线性相关关系(如:不同年龄段与不同收入段,职称和受教育年份)利用秩(数据的排序次序).认为:如果x与y相关,则相应的秩Ui、Vi也具有同步性.首先得到两变量中各数据的秩(Ui、Vi),并计算Di2统计量.计算Spearman秩相关系数若两变量存在强正相关性,则Di2应较小
5、,秩序相关系数较大.若两变量存在强负相关性,则Di2应较大,秩序相关系数为负,绝对值较大,计算相关系数,3、Kendall相关系数:度量定序定类变量间的线性相关关系首先计算一致对数目(U,变量y 随变量x的秩同步增大的秩对)和非一致对数目(V,变量y 未随变量x的秩同步增大的秩对2)如:对x和y求秩后为:x:2 4 3 5 1 y:3 4 1 5 2x的秩按自然顺序排序后:x:1 2 3 4 5 y:2 3 1 4 5(U=8,V=2)然后计算Kendall相关系数.若两变量存在强正相关性,则U较大,V较小,秩序相关系数较大;若两变量存在强负相关性,则V较大,U较小,秩序相关系数为负,绝对值较
6、大。若两变量相关性较弱,则U和V大致相等,秩序相关系数较小,计算相关系数,(二)相关系数检验应对两变量来自的总体是否相关进行统计推断.原因:抽样的随机性、样本容量小等(1)H0:两总体零相关(2)构造统计量,Pearson相关系数,Spearman系数,大样本 下,近似正态分布,kendall系数,大样本 下,近似正态分布,计算相关系数,(二)相关系数检验(3)计算统计量的值,并得到对应的相伴概率p(4)结论:如果pa,不能拒绝H0.,计算相关系数,(三)基本操作步骤(1)菜单选项:analyze-correlate-bivariate.(2)选择计算相关系数的变量到variables框.(3
7、)选择相关系数(correlation coefficients).(4)显著性检验(test of significance)tow-tailed:输出双尾概率P.one-tailed:输出单尾概率P,计算相关系数,(四)其他选项statistics选项:仅当计算简单相关系数时,选择输出哪些统计量.means and standard deviations:均值、标准差;cross-product deviations and covariances:分别输出两变量的离差平方和(sum of square 分母)、两变量的差积和(cross-products分子)、协方差(covarianc
8、e 以上各个数据除以n-1),计算相关系数,(五)应用举例利用相关系数分析人均GDP与移动电话普及率之间的关系*表示t检验值发生的概率小于等于0.05,即总体无相关的可能性小于0.05;*表示t检验值发生的概率小于等于0.01,即总体无相关的可能性小于0.01;*比*,拒绝零假设更可靠.,计算相关系数,(五)应用举例分析固定话费的高低是否与年龄、生活水平、文化程度相关.利用秩,通过计算spearman和kendall相关系数进行分析,偏相关分析,(一)偏相关系数(1)含义:在控制了其他变量的影响下计算两变量的相关系数虚假相关.如:小学16年级全体学生进行速算比赛(身高和分数间的相关受年龄的影响
9、)研究商品的需求量和价格、消费者收入之间的关系.因为:需求量和价格之间的相关关系包含了消费者收入对商品需求量的影响;收入对价格也产生影响,并通过价格变动传递到对商品需求量的影响中。,偏相关分析,(一)偏相关系数(2)计算方法:,偏相关分析,(二)基本操作步骤(1).菜单选项:analyze-correlate-partial(2).选择将参加计算的变量到variable框.(3).选择控制变量到controlling for 框。(4)option选项:zero-order correlations:输出简单相关系数矩阵,偏相关分析,(三)应用举例分析文化程度对话费与年龄之间的关系的影响,回归
10、分析概述,(一)回归分析理解(1)“回归”的含义galton研究父亲身高和儿子身高的关系时的独特发现.(2)回归线的获得方式一:局部平均 回归曲线上的点给出了相应于每一个x(父亲)值的y(儿子)平均数的估计(3)回归线的获得方式二:拟和函数使数据拟合于某条曲线;通过若干参数描述该曲线;利用已知数据在一定的统计准则下找出参数的估计值(得到回归曲线的近似);,回归分析概述,(二)回归分析的基本步骤(1)确定自变量和因变量(2)从样本数据出发确定变量之间的数学关系式,并对回归方程的各个参数进行估计.(3)对回归方程进行各种统计检验.(4)利用回归方程进行预测.,线性回归分析概述,(三)参数估计的准则
11、目标:回归线上的观察值与预测值之间的距离总和达到最小最小二乘法(利用最小二乘法拟和的回归直线与样本数据点在垂直方向上的偏离程度最低),一元线性回归分析,(一)一元回归方程:y=0+1x0为常数项;1为y对x回归系数,即:x每变动一个单位所引起的y的平均变动(二)一元回归分析的步骤利用样本数据建立回归方程回归方程的拟和优度检验回归方程的显著性检验(t检验和F检验)残差分析预测,一元线性回归方程的检验,(一)拟和优度检验:(1)目的:检验样本观察点聚集在回归直线周围的密集程度,评价回归方程对样本数据点的拟和程度。,(2)思路:因为:因变量取值的变化受两个因素的影响自变量不同取值的影响其他因素的影响
12、如:儿子身高(y)的变化受:父亲身高(x)的影响、其他条件于是:因变量总变差=自变量引起的+其他因素引起的即:因变量总变差=回归方程可解释的+不可解释的可证明:因变量总离差平方和=回归平方和+剩余平方和,一元线性回归方程的统计检验,(一)拟和优度检验:(3)统计量:判定系数R2=SSR/SST=1-SSE/SST.R2体现了回归方程所能解释的因变量变差的比例;1-R2则体现了因变量总变差中,回归方程所无法解释的比例。R2越接近于1,则说明回归平方和占了因变量总变差平方和的绝大部分比例,因变量的变差主要由自变量的不同取值造成,回归方程对样本数据点拟合得好在一元回归中R2=r2;因此,从这个意义上
13、讲,判定系数能够比较好地反映回归直线对样本数据的代表程度和线性相关性。,一元线性回归方程的统计检验,(二)显著性检验(1)目的:检验自变量与因变量之间的线性关系是否显著,是否可用线性模型来表示.(2)检验方法T检验F检验,一元线性回归方程的检验,(三)回归系数的显著性检验:t检验(1)目的:检验自变量对因变量的线性影响是否显著.(2)H0:=0 即:回归系数与0无显著差异(3)利用t检验,构造t统计量:其中:Sy是回归方程标准误差(Standard Error)的估计值,由均方误差开方后得到,反映了回归方程无法解释样本数据点的程度或偏离样本数据点的程度如果回归系数的标准误差较小,必然得到一个相
14、对较大的t值,表明该自变量x解释因变量线性变化的能力较强。,一元线性回归方程的检验,(4)计算t统计量的值和相伴概率p(5)判断:相伴概率=a:拒绝H0,即:回归系数与0有显著差异,自变量与因变量之间存在显著的线性关系,能够较好的解释说明因变量的变化.反之,不能拒绝H0(6)回归系数的区间估计,一元线性回归方程的检验,(四)回归方程的显著性检验:F检验(1)目的:检验自变量与因变量之间的线性关系是否显著,是否可用线性模型来表示.(2)H0:=0 即:回归系数与0无显著差异(3)利用F检验,构造F统计量:F=平均的回归平方和/平均的剩余平方和F(1,n-1-1)如果F值较大,则说明自变量造成的因
15、变量的线性变动远大于随机因素对因变量的影响,自变量于因变量之间的线性关系较显著(4)计算F统计量的值和相伴概率p(5)判断p=a:拒绝H0,即:回归系数与0有显著差异,自变量与因变量之间存在显著的线性关系。反之,不能拒绝H0,一元线性回归方程的检验,(五)t检验与F检验的关系一元回归中,F检验与t检验一致,即:F=t2,两种检验可以相互替代(六)F统计量和R2值的关系如果回归方程的拟合优度高,F统计量就越显著。F统计量越显著,回归方程的拟合优度就会越高。,线性回归方程的残差分析,(一)残差序列的正态性检验:绘制标准化残差的直方图或累计概率图(二)残差序列的随机性检验绘制残差和预测值的散点图,应
16、随机分布在经过零的一条直线上下(三)残差序列的等方差性检验,随机、等方差、独立,随机、异方差、独立,非独立,线性回归方程的残差分析,(四)残差序列独立性检验:残差序列是否存在后期值与前期值相关的现象,利用D.W(Durbin-Watson)检验d-w=0:残差序列存在完全正自相关;d-w=4:残差序列存在完全负自相关;0d-w2:残差序列存在某种程度的正自相关;2d-w4:残差序列存在某种程度的负自相关;d-w=2:残差序列不存在自相关.残差序列不存在自相关,可以认为回归方程基本概括了因变量的变化;否则,认为可能一些与因变量相关的因素没有引入回归方程或回归模型不合适或滞后性周期性的影响.,线性
17、回归方程的残差分析,(五)异常值(casewise或outliers)诊断利用标准化残差不仅可以知道观察值比预测值大或小,并且还知道在绝对值上它比大多数残差是大还是小.一般标准化残差的绝对值大于3,则可认为对应的样本点为奇异值异常值并不总表现出上述特征.当剔除某观察值后,回归方程的标准差显著减小,也可以判定该观察值为异常值,线性回归方程的预测,(一)点估计y0(二)区间估计 1-的近似置信区间:x0为xi的均值时,预测区间最小,精度最高.x0越远离均值,预测区间越大,精度越低.,一元线性回归分析操作,(一)基本操作步骤(1)菜单选项:Analyze-regression-linear(2)选择
18、一个变量为因变量进入dependent框(3)选择一个变量为自变量进入independent框(4)enter:所选变量全部进入回归方程(默认方法)(5)对样本进行筛选(selection variable)利用满足一定条件的样本数据进行回归分析(6)指定作图时各数据点的标志变量(case labels),一元线性回归分析操作,(二)statistics选项(1)基本统计量输出Estimates:默认.显示回归系数相关统计量.confidence intervals:每个非标准化的回归系数95%的置信区间.Descriptive:各变量均值、标准差和相关系数单侧检验概率.Model fit:默
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- SPSS 相关 分析 回归

链接地址:https://www.31ppt.com/p-5449230.html