lingo处理实例(多目标问题).ppt
《lingo处理实例(多目标问题).ppt》由会员分享,可在线阅读,更多相关《lingo处理实例(多目标问题).ppt(167页珍藏版)》请在三一办公上搜索。
1、数学建模辅导,2012年07月19日,常见的问题,1 分析题目以及选题2 方法的选择3 模型的体现4 对问题求解和软件使用5 论文写作和格式、排版6 其他,1 分析题目以及选题,越熟悉的领域越好?X(学经济的就一定要选择*题?)觉得越简单越好?X(*题感觉太难。)感兴趣很重要挖掘内部的数学问题(A题中的数学)抓住主要问题(不要跑题,减速带的设计、不是分析特定类型)要有独到的见解和创新的思路(只要讨论量与量的关系就回归、拟合)要能够根据问题合理安排时间(无法完成题目),2 方法的选择,对问题进行数学描述。(比如A题)要有大致方向,不要直接去查题目的关键词,比如直接搜索“股指预测”等等。平时要积累
2、,比赛时要多查资料多思考。组内讨论。完整学习已有方法,关键步骤要知道为什么(一些特殊的回归模型)。要结合自身条件选择方法,要可求解(偏微)。对以有方法,要能够结合问题特点进行修正(规划问题、最短路等等,东三省D题)。,3 模型的体现,要有完整的建模过程,达到让人看懂(看不懂,则白做)细致的问题分析(由此给出建立模型的依据,数学建模绝不简单的是用计算机进行数据分析,比如C题)精确的提炼出所需变量(A题中需要分析的量)问题内在机理(变量之间的关系)选择特定方法的原因(比如一般的统计方法的使用都依赖于强烈的问题的背景和已知的统计学信息)模型的数学表达(便于下文中应用数学技巧处理和求解)必要的解释(补
3、充一些说明使问题叙述更清晰),4 模型求解和软件使用,模型的求解要能够完整的回答题目中问题。要检验结果的合理性(不一定要体现在论文中)。要有结果分析。常见软件的使用(C,Matlab,Lingo,Mathematica等等)。学会使用可以查到的程序(读懂很重要)。会修改和改正他人的程序(包括改正错误)。结果的表述(不要罗列大量的数据表格)。,5 论文写作和排版,写些什么内容(说明文?)正文层次段落设置公式/Mathtype(与文字混排要注意行距、标号、对齐)提要式语句和结论性语句图、表(各种软件图的保存、图名、表头、边框)引用的工作要明示、参考文献,6 其他,如何查资料队友间合作讨论问题(达成
4、一致意见)良好的写作和编程习惯任务分配(不易完全分块、建模要共同完成),LINGO软件的基本使用方法,内容提要,LINGO入门2.在LINGO中使用集合3.运算符和函数4.LINGO的主要菜单命令5.LINGO命令窗口 6.习题,1.LINGO入门,LINGO入门2.在LINGO中使用集合3.运算符和函数4.LINGO的主要菜单命令5.LINGO命令窗口,LINGO软件的主要特色,两种命令模式,Windows模式:通过下拉式菜单命令驱动LINGO运行(多数菜单命令有快捷键,常用的菜单命令有快捷按钮),图形界面,使用方便;,命令行 模式:仅在命令窗口(Command Window)下操作,通过输
5、入行命令驱动LINGO运行。,(这里主要介绍这种模式),从LINDO 到 LINGO,如今 LINGO 功能增强,性能稳定,解答结果可靠。与LINDO相比,LINGO 软件主要具有两大优点:,内置建模语言,允许以简练、直观的方式描述较大规模的优化问题,所需的数据可以以一定格式保存在独立的文件中。,除具有LINDO的全部功能外,还可用于求解非线性规划问题,包括非线性整数规划问题;,LINGO的界面,LINGO软件的主窗口(用户界面),所有其他窗口都在这个窗口之内。,模型窗口(Model Window),用于输入LINGO优化模型(即LINGO程序)。,状态行(最左边显示“Ready”,表示“准备
6、就绪”),当前时间,当前光标的位置,LINGO的文件类型,.LG4:LINGO格式的模型文件,保存了模型窗口中所能够看到的所有文本和其他对象及其格式信息;.LNG:文本格式的模型文件,不保存模型中的格式信息(如字体、颜色、嵌入对象等);.LDT:LINGO数据文件;.LTF:LINGO命令脚本文件;.LGR:LINGO报告文件;.LTX:LINDO格式的模型文件;.MPS:示MPS(数学规划系统)格式的模型文件。,除“LG4”文件外,另外几种格式的文件都是普通的文本文件,可以用任何文本编辑器打开和编辑。,运行状态窗口,Variables(变量数量):变量总数(Total)、非线性变量数(Non
7、linear)、整数变量数(Integer)。,Constraints(约束数量):约束总数(Total)、非线性约束个数(Nonlinear)。,Nonzeros(非零系数数量):总数(Total)、非线性项系数个数(Nonlinear)。,Generator Memory Used(K)(内存使用量),Elapsed Runtime(hh:mm:ss)(求解花费的时间),运行状态窗口,求解器(求解程序)状态框,当前模型的类型:LP,QP,ILP,IQP,PILP,PIQP,NLP,INLP,PINLP(以I开头表示IP,以PI开头表示PIP),当前解的状态:Global Optimum,L
8、ocal Optimum,Feasible,Infeasible“(不可行),Unbounded“(无界),Interrupted“(中断),Undetermined“(未确定),解的目标函数值,当前约束不满足的总量(不是不满足的约束的个数):实数(即使该值=0,当前解也可能不可行,因为这个量中没有考虑用上下界命令形式给出的约束),目前为止的迭代次数,运行状态窗口,扩展的求解器(求解程序)状态框,使用的特殊求解程序:B-and-B(分枝定界算法)Global(全局最优求解程序)Multistart(用多个初始点求解的程序),目前为止找到的可行解的最佳目标函数值,目标函数值的界,特殊求解程序当前
9、运行步数:分枝数(对B-and-B程序);子问题数(对Global程序);初始点数(对Multistart程序),有效步数,注:凡是可以从一个约束直接解出变量取值时,这个变量就不认为是决策变量而是固定变量,不列入统计中;只含有固定变量的约束也不列入约束统计中。,运行状态窗口,一个简单的LINGO程序,例 直接用LINGO来解如下二次规划问题:,输入窗口如下:,程序语句输入的备注:,LINGO总是根据“MAX=”或“MIN=”寻找目标函数,而除注释语句和TITLE语句外的其他语句都是约束条件,因此语句的顺序并不重要。限定变量取整数值的语句为“GIN(X1)”和“GIN(X2)”,不可以写成“GI
10、N(2)”,否则LINGO将把这个模型看成没有整数变量。LINGO中函数一律需要以“”开头,其中整型变量函数(BIN、GIN)和上下界限定函数(FREE、BND(L,X,U))。而且0/1变量函数是BIN函数。,输出结果:,运行菜单命令“LINGO|Solve”,最优整数解X=(35,65),最大利润=11077.5,输出结果备注:,通过菜单“WINDOW|Status Window”看到状态窗口,可看到最佳目标值“Best Obj”与问题的上界“Obj Bound”已经是一样的,当前解的最大利润与这两个值非常接近,是计算误差引起的。如果采用全局最优求解程序(后面介绍),可以验证它就是全局最优
11、解。,LINGO是将它作为PINLP(纯整数非线性规划)来求解,因此找到的是局部最优解。,一个简单的LINGO程序,LINGO的基本用法的几点注意事项,LINGO中不区分大小写字母;变量和行名可以超过8个字符,但不能超过32个字符,且必须以字母开头。用LINGO解优化模型时已假定所有变量非负(除非用限定变量取值范围的函数free或BND另行说明)。变量可以放在约束条件的右端(同时数字也可放在约束条件的左端)。但为了提高LINGO求解时的效率,应尽可能采用线性表达式定义目标和约束(如果可能的话)。语句是组成LINGO模型的基本单位,每个语句都以分号结尾,编写程序时应注意模型的可读性。例如:一行只
12、写一个语句,按照语句之间的嵌套关系对语句安排适当的缩进,增强层次感。以感叹号开始的是说明语句(说明语句也需要以分号结束))。,2.在LINGO中使用集合,LINGO入门2.在LINGO中使用集合3.运算符和函数4.LINGO的主要菜单命令5.LINGO命令窗口 6.习题,集合的基本用法和LINGO模型的基本要素,理解LINGO建模语言最重要的是理解集合(Set)及其属性(Attribute)的概念。,例 SAILCO公司需要决定下四个季度的帆船生产量。下四个季度的帆船需求量分别是40条,60条,75条,25条,这些需求必须按时满足。每个季度正常的生产能力是40条帆船,每条船的生产费用为400美
13、元。如果加班生产,每条船的生产费用为450美元。每个季度末,每条船的库存费用为20美元。假定生产提前期为0,初始库存为10条船。如何安排生产可使总费用最小?,用DEM,RP,OP,INV分别表示需求量、正常生产的产量、加班生产的产量、库存量,则DEM,RP,OP,INV对每个季度都应该有一个对应的值,也就说他们都应该是一个由4个元素组成的数组,其中DEM是已知的,而RP,OP,INV是未知数。,问题的模型(可以看出是LP模型),目标函数是所有费用的和,约束条件主要有两个:,1)能力限制:,2)产品数量的平衡方程:,加上变量的非负约束,注:LINDO中没有数组,只能对每个季度分别定义变量,如正常
14、产量就要有RP1,RP2,RP3,RP4 4个变量等。写起来就比较麻烦,尤其是更多(如1000个季度)的时候。记四个季度组成的集合QUARTERS=1,2,3,4,它们就是上面数组的下标集合,而数组DEM,RP,OP,INV对集合QUARTERS中的每个元素1,2,3,4分别对应于一个值。LINGO正是充分利用了这种数组及其下标的关系,引入了“集合”及其“属性”的概念,把QUARTERS=1,2,3,4称为集合,把DEM,RP,OP,INV称为该集合的属性(即定义在该集合上的属性)。,集合及其属性,集合元素及集合的属性确定的所有变量,LINGO中定义集合及其属性,LP模型在LINGO中的一个典
15、型输入方式,以“MODEL:”开始,以“END”结束,给出优化目标和约束,目标函数的定义方式,SUM(集合(下标):关于集合的属性的表达式),对语句中冒号“:”后面的表达式,按照“:”前面的集合指定的下标(元素)进行求和。,本例中目标函数也可以等价地写成SUM(QUARTERS(i):400*RP(i)+450*OP(i)+20*INV(i),“SUM”相当于求和符号“”,由于本例中目标函数对集合QUARTERS的所有元素(下标)都要求和,所以可以将下标i省去。,约束的定义方式,循环函数FOR(集合(下标):关于集合的属性的约束关系式),对冒号“:”前面的集合的每个元素(下标),冒号“:”后面
16、的约束关系式都要成立,本例中,每个季度正常的生产能力是40条帆船,这正是语句“FOR(QUARTERS(I):RP(I)40);”的含义。由于对所有元素(下标I),约束的形式是一样的,所以也可以像上面定义目标函数时一样,将下标i省去,这个语句可以简化成“FOR(QUARTERS:RP40);”。,本例中,对于产品数量的平衡方程,由于下标i=1时的约束关系式与i=2,3,4时有所区别,所以不能省略下标“i”。实际上,i=1时要用到变量INV(0),但定义的属性变量中INV不包含INV(0)(INV(0)=10是一个已知的)。为了区别i=1和i=2,3,4,把i=1时的约束关系式单独写出,即“IN
17、V(1)=10+RP(1)+OP(1)-DEM(1);”;而对i=2,3,4对应的约束,对下标集合的元素(下标i)增加了一个逻辑关系式“i#GT#1”(这个限制条件与集合之间有一个竖线“|”分开,称为过滤条件)。限制条件“i#GT#1”是一个逻辑表达式,意思就是i1;“#GT#”是逻辑运算符号,意思是“大于(Greater Than的字首字母缩写)”。,约束的定义方式,问题的求解:运行菜单命令“LINGO|Solve”,最小成本=78450,注:由于输入中没有给出行名,所以行名是系统自动按照行号1-9生成的。选择菜单命令“LINGO|Generate|Disply model(Ctrl+G)”
18、,可以得到展开形式的模型(如图),可以看到完整的模型,也能确定行号(行号放在方括号“”中,且数字前面带有下划线“_”)。最好在输入模型时用户主动设定约束的行名(即约束名),使程序清晰些。单一约束的行名设置方法就是将行名放在方括号“”中,置于约束之前。后面将结合具体例子介绍在使用集合的情况下如何设置行名。,小结:LINGO模型最基本的组成要素,一般来说,LINGO中建立的优化模型可以由个四部分组成,或称为四“段”(SECTION):,(1)集合段(SETS):以“SETS:”开始,“ENDSETS”结束,定义必要的集合变量(SET)及其元素(MEMBER,含义类似于数组的下标)和属性(ATTRI
19、BUTE,含义类似于数组)。,如上例中定义了集合quarters(含义是季节),它包含四个元素即四个季节指标(1,2,3,4),每个季节都有需求(DEM)、正常生产量(RP)、加班生产量(OP)、库存量(INV)等属性(相当于数组,数组下标由quarters元素决定)。一旦这样的定义建立起来,如果quarters的数量不是4而是1000,只需扩展其元素为1,2,.,1000,每个季节仍然都有DEM,RP,OP,INV这样的属性(这些量的具体数值如果是常量,则可在数据段输入;如果是未知数,则可在初始段输入初值)。当quarters的数量不是4而是1000时,没有必要把1,2,.,1000全部一个
20、一个列出来,而是可以如下定义quarters集合:“quarters/1.1000/:DEM,RP,OP,INV;”,“1.1000”的意思就是从1到1000的所有整数。,(2)目标与约束段:目标函数、约束条件等,没有段的开始和结束标记,因此实际上就是除其它四个段(都有明确的段标记)外的LINGO模型。这里一般要用到LINGO的内部函数,尤其是与集合相关的求和函数SUM和循环函数FOR等。上例中定义的目标函数与quarters的元素数目是 4或 1000并无具体的关系。约束的表示也类似。,(3)数据段(DATA):以“DATA:”开始,“ENDDATA”结束,对集合的属性(数组)输入必要的常数
21、数据。格式为:“attribute(属性)=value_list(常数列表);”常数列表(value_list)中数据之间可以用逗号“,”分开,也可以用空格分开(回车等价于一个空格),如上面对DEM的赋值也可以写成“DEM=40 60 75 25;”。,在LINGO模型中,如果想在运行时才对参数赋值,可以在数据段使用输入语句。但这仅能用于对单个变量赋值,输入语句格式为:“变量名=?;”。例如,上例中如果需要在求解模型时才给出初始库存量(记为A),则可以在模型中数据段写上语句:”A=?;”在求解时LINDO系统给出提示界面,等待用户输入变量A的数值。当然,此时的约束语句 INV(1)=10+RP
22、(1)+OP(1)-DEM(1);也应该改写成 INV(1)=A+RP(1)+OP(1)-DEM(1);这样,模型就可以计算任意初始库存量(而不仅仅只能计算初始库存量为10)的情况了。,(4)初始段(INIT):以“INIT:”开始,“ENDINIT”结束,对集合的属性(数组)定义初值(因为求解算法一般是迭代算法,所以用户如果能给出一个比较好的迭代初值,对提高算法的计算效果是有益的)。如果有一个接近最优解的初值,对LINGO求解模型是有帮助的。定义初值的格式为:“attribute(属性)=value_list(常数列表);”这与数据段中的用法是类似的。上例中没有初始化部分,我们将在下一个例子
23、中举例说明。,基本集合与派生集合,例3.4 建筑工地的位置(用平面坐标a,b表示,距离单位:公里)及水泥日用量d(吨)下表给出。有两个临时料场位于A(5,1),B(2,7),日储量各有20吨。从A,B两料场分别向各工地运送多少吨水泥,使总的吨公里数最小。两个新的料场应建在何处,节省的吨公里数有多大?,建立模型,记工地的位置为,水泥日用量为;料场位置为,日储量为;从料场 向工地 的运送量为。,使用现有临时料场时,决策变量只有(非负),所以这是LP模型;当为新建料场选址时决策变量为 和,由于目标函数 对 是非线性的,所以在新建料场时是NLP模型。先解NLP模型,而把现有临时料场的位置作为初始解告诉
24、LINGO。,本例中集合的概念,利用集合的概念,可以定义需求点DEMAND和供应点SUPPLY两个集合,分别有6个和2个元素(下标)。但决策变量(运送量)与集合DEMAND和集合SUPPLY都有关系的。该如何定义这样的属性?,集合的属性相当于以集合的元素为下标的数组。这里的 相当于二维数组。它的两个下标分别来自集合DEMAND和SUPPLY,因此可以定义一个由二元对组成的新的集合,然后将 定义成这个新集合的属性。,输入程序,定义了三个集合,其中LINK在前两个集合DEMAND 和SUPPLY的基础上定义,表示集合LINK中的元素就是集合DEMAND 和SUPPLY的元素组合成的有序二元组,从数
25、学上看LINK是DEMAND 和SUPPLY的笛卡儿积,也就是说LINK=(S,T)|SDEMAND,TSUPPLY因此,其属性C也就是一个6*2的矩阵(或者说是含有12个元素的二维数组)。,LINGO建模语言也称为矩阵生成器(MATRIX GENERATOR)。类似DEMAND 和SUPPLY直接把元素列举出来的集合,称为基本集合(primary set),而把LINK这种基于其它集合而派生出来的二维或多维集合称为派生集合(derived set)。由于是DEMAND 和SUPPLY生成了派生集合LINK,所以DEMAND 和SUPPLY 称为LINK的父集合。,输入程序,初始段,INGO对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- lingo 处理 实例 多目标 问题
链接地址:https://www.31ppt.com/p-5437878.html