HVAC系统验证中的风险管理-徐影.ppt
《HVAC系统验证中的风险管理-徐影.ppt》由会员分享,可在线阅读,更多相关《HVAC系统验证中的风险管理-徐影.ppt(149页珍藏版)》请在三一办公上搜索。
1、,HVAC系统验证中的风险管理,徐影,背景药品生产对环境的要求,要求“洁净”生产,甚至“无菌”生产要求防止交叉污染,特别是人员对产品的污染物料、产品需要合适的贮存条件需要防止有害物质对人员的危害。,背景HVAC系统能做什么,控制药品及生产过程中的环境,保证产品质量;帮助预防交叉污染防止有害物质对人员及环境的影响提供新鲜空气,使人员舒适。,HVAC系统对药品生产如此重要,其本身的性能必须通过验证来加以确认,而验证将贯穿于系统的整个生命周期,有必要对系统的验证进行风险控制。,内容,一、概述二、设计中需要关注的风险三、安装过程的风险控制四、运行测试的风险控制五、性能测试的风险控制,HVAC的构成及工
2、作原理GMP对HVAC的要求,12,一、概述,系统构成及工作原理,典型的HVAC系统示意图,系统构成及工作原理,空气处理单元辅助单元:冷却、冷冻系统、加热系统等管道系统:新风、回风、送风、排风控制系统,空气处理单元,风门,混和段,回风,初效过滤,预热段,风机,消声,缓冲空段,去湿 表冷器冷却,送风、去HEPA过滤器中效,结构与原理,空气处理单元,三级过滤器,初效过滤器,材质:无纺布、尼龙网、活性碳滤材、金属孔网等,外框材料可选纸框、铝框、镀锌板框结构:板式、折叠式、袋式作用:过滤5um以上尘埃粒子质量标准:GB/T14295-93空气过滤器、JG/T22-1999一般通风用空气过滤器性能试验方
3、法,初始压差:50Pa过滤效率:对5微米粒子,过滤效率80%E20%,空气处理单元,空气处理单元,中效过滤器,材质:有机玻璃纤维、无纺布结构:板式、折叠式、袋式作用:过滤1-5um尘埃粒子质量标准:GB/T14295-93空气过滤器、JG/T22-1999一般通风用空气过滤器性能试验方法,初始压差:80Pa过滤效率:对1微米粒子,过滤效率70%E20%,有隔板高效过滤器,空气处理单元,高效过滤器(HEPA),材质:玻璃纤维结构:有隔板、无隔板,作用:过滤 1um尘埃粒子,无隔板高效过滤器,与有隔板过滤器的矩形通道相比,,无隔板过滤器的V形通道进一步改善了容尘的均匀性,延长了使用寿命,空气处理单
4、元,高效过滤器(HEPA),质量标准:GB13554-92高效空气过滤器,初始压差:220Pa过滤效率:按GB6165规定的钠焰法测试,其效率如下:,级别ABCD,过滤效率对0.5微米粒子,E99.9%对0.5微米粒子,E99.99%对0.5微米粒子,E99.999%对0.1微米粒子,E99.999%,主要为空气处理装置提供冷、热源的辅助设施,通常包括:,冷源:冷水(风冷)机组、冷却塔热源:蒸汽、电加热器洁净区化学试剂熏蒸设施,辅助单元制冷机组,风管系统,分类:,按作用分为:新风、送风、排风、回风按系统分为:高压、中压、低压,控制系统,控制系统类型:,基本控制系统:单一的控制单元或单一的组合控
5、制单元,如:,温湿度控制单元;或许具有报警功能,但没有监测系统运行、分析趋势或系统内部件状态的功能;,控制系统,控制系统类型:,中央集成控制系统:如建筑管理系统(BMS)或自动化系统(BAS),专有集合系统。由大量的局部独立控制板、现场控制板或远距离控制板组成。系统中的各种控制板被网络缆线连接到一个或多个“监督者”终端电脑。终端电脑能够使工作人员看到输入输出信号,建立记录系统,,使工作人员检查运行数据和趋势,改变初始设置点,在中心位置生成报警报告。,控制系统,通常具有以下功能:,参数与设备状态检测、显示,参数和设备显示,通过集中监控系统主机系统的显示或打印单元以及就地控制系统的光、声响等器件显
6、示某一参数是否达到规定值,或显示某一设备运行状态。,自动调节与控制,参数自动调节与控制,使某些运行参数自动的保持规定值或按预定的规律变动,如:自控加热、制冷、调节风量,工况自动转换,工况自动转换,如:生产间隙变频运行,控制系统,通常具有以下功能:,设备连锁与自动保护,连锁功能,使相关设备按某一指定程序顺序启停,如送风机和排风机的启停顺序;自动保护功能,如:系统的电加热器应与送风机联锁,并应有无风断电、超温断电保护装置;电加热器的金属风管应接地。,报警功能,自动保护和报警:指设备运行状况异常或某些参数超过允许值,时,发出报警信号或使系统中某些设备及元件自动停止工作。,控制系统,通常具有以下功能:
7、,记录功能,每个公司都对记录有自身的个性要求有可能只是对制造过程中警报的记录,或甚至不记录警报!而是批次记录表的记录。推荐进行实际记录。以目前的数据资料记录系统而言,实际记录一般包含连续记录,表、或每日的最小/大平均数、标准偏差的记录。,控制系统,示例,GMP对机组的要求,无菌附录第三十二条 在任何运行状态下,洁净区通过适当的送风应当能够确保对周围低级别区域的正压,维持良好的气流方向,保证有效的净化能力。无菌附录第三十四条 应设送风机组故障的报警系统。,机组需要连续运行机组控制系统具有故障报警功能,GMP对温湿度的要求,第四十二条 厂房应当有适当的照明、温度、湿度和通风,确保生产和贮存的产品质
8、量以及相关设备性能不会直接或间接地受到影响。,不再直接强调具体的控制范围由企业依据风险来确定,GMP对气流组织的要求,第四十八条 应当根据药品品种、生产操作要求及外部环境状况等配置空调净化系统,使生产区有效通风,并有温度、湿度控制和空气净化过滤,保证药品的生产环境符合要求。无菌附录第三十条。更衣室应当有足够的换气次数。无菌附录第三十三条 应当能够证明所用气流方式不会导致污染风险并有记录(如烟雾试验的录像)。,我国GMP中首次提出“有效通风”、“换气次数”的要求对气流流型做出检测规定,GMP对压差的要求,第四十八条 洁净区与非洁净区之间、不同级别洁净区之间的压差应当不低于10帕斯卡。必要时,相同
9、洁净度级别的不同功能区域(操作间)之间也应当保持适当的压差梯度。第五十三条 产尘操作间(如干燥物料或产品的取样、称量、混合、包装等操作间)应当保持相对负压或采取专门的措施,防止粉尘扩散、避免交叉污染并便于清洁。第一百九十条 在干燥物料或产品,尤其是高活性、高毒性或高致敏性物料或产品的生产过程中,应当采取特殊措施,防止粉尘的产生和扩散。第一百九十七条 生产过程中应当尽可能采取措施,防止污染和交叉污染,如:设置必要的气锁间和排风;空气洁净度级别不同的区域应当有压差控制;应当降低未经处理或未经充分处理的空气再次进入生产区导致污染的风险;无菌附录第三十条 应当按照气锁方式设计更衣室,。无菌附录第三十一
10、条 气锁间两侧的门不得同时打开。可采用连锁系统或光学或(和)声学的报警系统防止两侧的门同时打开。无菌附录第三十四条。应当在压差十分重要的相邻级别区之间安装,GMP对压差的要求,要求设置压差,维持压力关系以控制污染不同等级之间明确具体要求同等级之间未作具体规定,企业可根据产品风险加以设置更衣室的设计压差的检测,GMP对洁净度的要求,洁净级别重新分级,第四十六条 为降低污染和交叉污染的风险,厂房、生产设施和设备应当根据所生产药品的特性、工艺流程及相应洁净度级别要求合理设计、布局和使用,。无菌附录第八条 洁净区的设计必须符合相应的洁净度要求,包括达,到“静态”和“动态”的标准。直接采用了ISO 14
11、644的洁净分级标准,验证流程介绍关键项目设计的控制,二、系统设计中需关注的风险,12,计,1,验证流程,User Requirements Specification用户需求,Functional Specifications功能设计Design Specifications设计规范(详细设计)Build System构建体系(DQ、建造),Performance Qualification性能确认,Operational Qualification运行确认Installation Qualification安装确认,设发展5,用户需求URS,这是个什么样的文件?,User Requirem
12、ent Specification,简称URS描述在满足相关法规及标准的前提下,用户通过设施设备等达到生产、检验或管理的目标所需要的条件的成文文件,它的重要性,URS是用户对系统/设备的具体输出要求的详尽描述,系统/设备的设计将围绕URS展开,它决定了系统/设备的性能URS是验证的源头,从DQ开始,所有文件的变更都是GMP检查的范围,URS是DQ的技术支持性文件之一应尽早确定并固定化,后期的改动都可能导致成本的增加,用户需求URS,它的内容主要可以从以下一些方向来考虑,质量,洁净度温湿度压差气流组织换气次数自净时间,数量,风量及风量平衡,关键项目设计风险控制-洁净度,洁净度包括悬浮粒子数、微生
13、物数(沉降菌、浮游菌)采用标准,最早的标准:联邦标准FS209ISO 14644-1标准,替代FS209,广泛采用GMPS采用的不同标准:FDA、EU、SFDA,洁净度级别,关键项目设计风险控制-洁净度我国GMP采用的洁净度标准:悬浮粒子指标悬浮粒子最大允许数/立方米,静态,动态(3),0.5m,5m(2),0.5m,5m,A级(1)B级C级D级,352035203520003520000,2029290029000,35203520003520000不作规定,20290029000不作规定,为了确定A级区的级别,每个采样点的采样量不得少于1m3。A级区空气尘埃粒子的级别为ISO 4.8,以5
14、.0m的尘粒为限度标准。B级区(静态)的空气尘埃粒子的级别为ISO 5,同时包括表中两种粒径的尘粒。对于C级区(静态和动态)而言,空气尘埃粒子的级别分别为ISO 7和ISO 8。对于D级区(静态)空气尘埃粒子的级别为ISO 8。,测试方法可参照ISO14644-1。,关键项目设计风险控制-洁净度我国GMP采用的洁净度标准:微生物指标表面微生物,级别A级B级C级D级,浮游菌cfu/m3110100200,沉降菌()cfu/4小时1550100,接触碟()cfu/碟152550,5指手套cfu/手套15,关键项目设计风险控制-洁净度,悬浮粒子与微生物的关系,粒子与微生物在空气中的存在形式存在的粒子
15、数反映了潜在的微生物在关键区域连续出现少量的5.0 m粒子时,可能是污染事件,关键项目设计风险控制-洁净度,关键项目设计风险控制-洁净度,关键项目设计风险控制-洁净度,生物制品原液制备工序洁净度的设计法规中未明确!企业可根据工艺暴露的风险来设计。,2,单向流宽度需要注意,流,A级开门干预时可能受影响,关键项目设计风险控制-洁净度A级设计的缺陷:无菌灌装间A级单向流的循环风机安装于无菌室内11.风机不便维修2.抽风影响B级的气,12,3,关键项目设计风险控制-洁净度,关键项目设计风险控制温湿度,确定温湿度时需要关注的风险点:,工艺物料、产品的要求仪器稳定运行,避免潮湿、静电的影响设备、工序产湿、
16、产热的考量,特别是动态的考虑,如清洗间、洗瓶间的空调系统的设计避免阳光照射控制微生物生长人员舒适度的需求,无特殊要求时,温度可控制在1826,相对湿度可控制在45%65%。,关键项目设计风险控制压差,压差设计风险,风险点:不同洁净区域的压差控制紊乱导致污染;控制方法:气流总是从压力高的地方流向压力低的,地方,合理的利用压差来控制气流的流向,从而控制交叉污染的风险,常用的方法有:1、提高关键操作房间的静压差2、降低产生污染的操作间静压差3、采用气闸将洁净、非洁净区域隔离,关键项目设计风险控制压差,梯度压差设计,GMPs要求压差从洁净级别最高的到最低的房间逐渐递减我国GMP要求10PaFDA要求:
17、至少10-15Pa;EU要求:10-15Pa(参考值),关键项目设计风险控制压差,气闸:,在关键区域之间控制人流和物流的房间用于人员更衣、物料清洁和消毒始终保持一道门关闭来控制压差,关键项目设计风险控制压差,气闸的三种方式:,阶梯型气泡型下沉型,由产品和工艺来决定,关键项目设计风险控制压差,阶梯型气锁适用范围:,有洁净度但无隔离粉尘防止外泄的要求;有隔离的要求,但无洁净度要求,设置在有危害物厂房的前端;常用于B-C、C-D;,无菌生产,有危害区,15Pa15Pa,关键项目设计风险控制压差,气泡型气锁适用范围:,有危害的工艺区,需要用这种气锁来隔离有害物质,如疫苗生产的活菌、活毒区;但需考虑气锁
18、内气流可通过门缝泄漏到相关区域的风险,气锁洁净度应与相关操作间洁净度相同;,无毒区活毒区,15Pa,关键项目设计风险控制压差,下沉型气锁适用范围:,气锁比两端洁净区压力低5-8Pa,抽走的空气大于送风,适用于有危害产品暴露、产尘较多的洁净区;但需要注意气锁内需要送风保持一定的自净能力;抽走的空气是,有危害的或粉尘较多的混合空气,该部分空气一般不再回收;,无毒区活毒区,15Pa,关键项目设计风险控制压差,更衣间的设计,按气闸 方式设计,要求一定的换气次数由于房间较小,不需要太大的送风在更洁净的终端送风,在“脏”侧回风,进行“风淋”更衣室末端要求达到相关净化室的级别,关键项目设计风险控制压差,更衣
19、间的设计,必要时考虑进出分开,防止人员在更衣时带来的交叉污染,关键项目设计风险控制气流组织,气流组织设计风险,风险点:气流组织设计不合理,出现乱流或涡流引起的空气聚集产生污染,增加产品污染的风险;控制措施:,1、合理设计洁净室内部气流组织,利用气流将生产过程中的污染物及时排出室内2、应对气流流型进行评估,避免,特别是产品暴露端气流的覆盖情况3、关键区域气流流型应进行在位分析(可视化研究),证明其为单向流并覆盖产品,关键项目设计风险控制换气次数,换气次数的设计风险,GB50457-2008医药工业洁净厂房设计规范药品生产质量管理规范:未对换气次数要求(未指明标准)上述二标准中均未提及B级换气次数
20、要求。,关键项目设计风险控制换气次数,B级设计的风险,通常,B级区域的送风量很大,换气次数高达4060次(ISPE指南)。均匀布置送风口,在送风支管上安装定风量调节装,置(CAV),配合总送风调频装置对关键区域室内的风量精确调控。,关键项目设计风险控制换气次数,B级设计的风险,单向流B级与乱流B级差异较大,单向流B级具有更高的安全性。单向流B级的换气次数:,0.4536001=1620m31620m3(12.5)=648次/小时,关键项目设计风险控制自净时间,自净时间的设计风险,风险点:自净能力不足,导致污染长时间存在,可能增加污染的几率;它是系统排出污染能力的指标控制措施:有效通风,提高换气
21、次数,使自净时间,达到设计要求1、GMP要求关键区域从动态到静态的自净时间应达到15-20min(指导值),C、D级符合要求2、C、D级的标准可参考 洁净室施工及验收规范JGJ71-90,关键项目设计风险控制送回排及风量平衡,新风设计风险,风险点:新风量设计偏小,供给不足,使系统由于局部排风及维护正压造成的风量损失得不到及时补偿而使风量不足,甚至会造成室内负压。控制措施:在准确计算新风量的基础上,合理设计新,风口的尺寸和数量。按照GB50457-2008医药工业洁净厂房设计规范,新风应取下列的最大值:1、补偿室内排风量和保持室内正压所需新鲜空气量2、室内每人新鲜空气量不小于40m3/h,送风设
22、计的风险,1,风险点1:风量设计偏小,无法满足净化空调系统的需要,使实际送风量远低于设计送风量控制措施:,1、准确计算系统风量2、建议选用风机压头时,粗效至高效过滤器的终阻力可按初阻力分别加50-150Pa来计算。另外,为了避免过滤器随着时间的增长而阻力增加使洁净室风量下降可采用定风量调节器来代普通阀门,以自动补偿过滤器增加阻力,保持风量的恒定。,关键项目设计风险控制送回排及风量平衡,送风量的计算,按照GB50457-2008医药工业洁净厂房设计规范,新风应取下列的最大值,按换气次数计算或按室内发尘量计算,确保自净时间符合设计要求根据湿、热负荷计算的送风量向室内提供的新鲜空气量,另外需要考虑:
23、,能够满足冷却负荷能够抵消排风量+流失量能够抵消微粒,关键项目设计风险控制送回排及风量平衡,位置,送风设计的风险,风险点2:送风口设计不合理,室内不能有效通风,气流进入室,内不均匀,形成局部的污染点,控制措施:,1、注意送风形式、射流参数;2、注意房间的几何形状(考虑工艺设备,特别是产热设备及其排风),送,风和回风均匀布局,均匀分配空气,关键项目设计风险控制送回排及风量平衡,散流器使送风更均匀,合理安排回风口的,回风设计风险,空气进入洁净室后被污染,但其温湿度变化不大的,可以经过重新过滤处理,将其变为洁净空气再利用,设计时注意以下风险:,回风口应易于清洁回风口的布局一般采用室内侧下部回风,与送
24、风口合理布局,保持室内气流组织的合理性回风口应远离单向流,以免影响其流向散发粉尘和危害物质的洁净室不采用走廊回风,也不应采用顶部回风有些洁净室回风口设的太少,太小,甚至不设计,从而使室内正压过大,风从门及传递窗高速压出产生啸声,不仅增加了噪声,又使系统的阻力增大,回风量减少,增加了新风需求及系统耗能。不同洁净级别的区域共用回风隔墙,而且在回风隔墙内不设置回风管,,关键项目设计风险控制送回排及风量平衡,回风口直接安装在隔墙上,导致低压一侧无法回风,排风设计的风险,哪些情况需要排风?,关键项目设计风险控制送回排及风量平衡,1、生产过程中散发粉尘的洁净室,经处理后仍不能避免交叉污染的2、生产中使用有
25、机溶媒,且因气体聚集可能导致火灾或爆炸危险的3、病原体操作区4、生产中产生大量有害物质、异味或挥发性气体的,排风装置设计的风险控制,方式:全排、局排,注意避免影响室内风量,从而影响压差防倒灌措施排放含易燃易爆气体的应采用防火防爆措施高致敏性药品(如青霉素类药品)、生物安全性药品(二类以上病原体)的排风需经高效过滤器过滤后排放(设置高效过滤器的完整性监控手段)采用熏蒸消毒的洁净室应设置消毒排风设施,关键项目设计风险控制送回排及风量平衡,风,几种排风装置,关键项目设计风险控制送回排及风量平衡,排风过滤机组,排风,送风高效空气过滤器洁净室回风口,排风加过滤器,排风止回阀,进风高效空气过滤器送洁净室回
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- HVAC 系统 验证 中的 风险 管理 徐影
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-5433759.html