DNA复制RNA转录蛋白质翻译.ppt
《DNA复制RNA转录蛋白质翻译.ppt》由会员分享,可在线阅读,更多相关《DNA复制RNA转录蛋白质翻译.ppt(113页珍藏版)》请在三一办公上搜索。
1、第十一章 DNA复制、RNA转录、蛋白质翻译,第一节 DNA的复制与修复 第二节 RNA的生物合成和加工 第三节蛋白质的生物合成,第一节 DNA的复制与修复,DNA是由四种脱氧核糖核酸所组成的长链大分子,是遗传信息的携带者。生物体的遗传信息就贮存在DNA的四种脱氧核糖核酸的排列顺序中。,DNA通过复制将遗传信息由亲代传递给子代;通过转录和翻译,将遗传信息传递给蛋白质分子,从而决定生物的表现型。DNA的复制、转录和翻译过程就构成了遗传学的中心法则。,一.DNA的复制,(一)、半保留复制 DNA在复制时,以亲代DNA的每一股作模板,合成完全相同的两个双链子代DNA,每个子代DNA中都含有一股亲代D
2、NA链,这种现象称为DNA的半保留复制。,(二)、DNA复制的起始点和方式复制子是DNA能独立进行复制的单位。需在特定的位点起始,可能还有终点。在原核生物中,复制起始点通常为一个,复制方向大多是双向的,也有单向的,而在真核生物中则为多个复制起始点。,(三)、DNA聚合反应有关的酶,2.DNA聚合酶,在原核生物(大肠杆菌)中,目前发现的DNA聚合酶有五种,研究较多的有三种,分别命名为DNA聚合酶(pol),DNA聚合酶(pol),DNA聚合酶(pol),这三种酶都属于具有多种酶活性的多功能酶。参与DNA复制的主要是pol 和pol。,pol 为单一肽链的大分子蛋白质,可被特异的蛋白酶水解为两个片
3、段,其中的大片段称为Klenow片段,具有53聚合酶活性和35外切酶的活性。另一小片段有53外切酶的活性。,pol 由十种亚基组成,其中亚基具有53聚合DNA的酶活性,因而具有复制DNA的功能;而亚基具有35外切酶的活性,因而与DNA复制的校正功能有关。DNA-pol和DNA-pol 为修复酶,DNA-pol 真正起复制作用的酶,为复制酶。,原核生物中的三种DNA聚合酶,核酸外切酶活性 35外切酶活性 53外切酶活性,3、DNA连接酶催化一条DNA链的3末端与相邻的另一条DNA链的5末端之间的磷酸二酯键的合成。与同一互补链结合并相邻。(双链DNA切口)条件:需一段DNA片段具有3-OH,而另一
4、段DNA片段具有5-Pi基;未封闭的缺口位于双链DNA中,即其中有一条链是完整的;需要消耗能量。,(四)DNA的半不连续复制,半不连续复制:双链DNA分子的两条链是反向平行的。而DNA聚合酶的方向都是5 3。当DNA复制时,一条链是连续合成的,称前导链,而另一条在5 3方向合成小片段DNA(冈崎片段),然后通过酶将这些片段连接起来,这不连续合成的DNA 链为滞后链。冈崎用电子显微镜看到了DNA复制过程中出现一些不连续片段,这些不连续片段只存在与DNA复制叉上其中的一股。后来就把这些不连续的片段称为冈崎片段。,前导,滞后,1、复制的起始 由蛋白因子识别复制起始点解旋解链,形成复制叉:由拓扑异构酶
5、和解链酶作用,使DNA的超螺旋及双螺旋结构解开,碱基间氢键断裂,形成两条单链DNA。单链DNA结合蛋白(SSB)结合在两条单链DNA上,形成复制叉。DNA复制时,局部双螺旋解开形成两条单链,这种叉状结构称为复制叉。引发体组装:蛋白因子以及引物酶一起组装形成引发体。引发:在引物酶的催化下,以DNA为模板,合成一段短的RNA片段,从而获得3端自由羟基(3-OH)。,(五)DNA复制的过程(原核生物)起始、延长、终止,拓扑异构酶(又称DNA旋转酶)拓扑异构酶可使DNA双链中的一条链切断,松开双螺旋后再将DNA链连接起来,从而避免出现链的缠绕。拓扑异构酶可切断DNA双链,使DNA的超螺旋松解后,再将其
6、连接起来。解螺旋酶又称解链酶或rep蛋白,是用于解开DNA双链的酶蛋白,每解开一对碱基,需消耗两分子ATP。,单链DNA结合蛋白(SSB)这是一些能够与单链DNA结合的蛋白质因子。其作用为:使解开双螺旋后的DNA单链能够稳定存在,即稳定单链DNA,便于以其为模板复制子代DNA;保护单链DNA,避免核酸酶的降解。引物酶(合成RNA)引物酶本质上是一种依赖DNA的RNA聚合酶,该酶以DNA为模板,聚合一段RNA短链引物,以提供自由的3-OH,使子代DNA链能够开始聚合。,2.复制的延长由DNA聚合酶催化,以35方向的亲代DNA链为模板,从53方向聚合子代DNA链。在原核生物中,参与DNA复制延长的
7、是DNA聚合酶。引发体向前移动,解开新的局部双螺旋,形成新的复制叉,滞后链重新合成RNA引物,继续进行链的延长。,解,3.复制的终止去除引物,填补缺口;连接冈崎片段;在原核生物中,由DNA聚合酶来水解去除RNA引物,并由该酶催化延长引物缺口处的DNA,直到剩下最后一个磷酸酯键的缺口。在DNA连接酶的催化下,形成最后一个磷酸酯键,将冈崎片段连接起来,形成完整的DNA长链。,前导,滞后,5,5,3,3,DNA复制过程模式图,DNA旋转酶,ATP,ADP+Pi,DNA结合蛋白,引物RNA,引物酶,DNA聚合酶,DNA聚合酶,DNA连 接 酶,RNA引物,解旋酶,DNA聚合酶,复制叉移动方向,5,3,
8、,3,5,,3,5,,真核生物端粒的形成:端粒是指真核生物染色体线性DNA分子末端的结构部分,通常膨大成粒状。线性DNA在复制完成后,其末端由于引物RNA的水解而可能出现缩短。故需要在端粒酶的催化下,进行延长反应。端粒酶是一种RNA-蛋白质复合体,它可以其RNA为模板,通过逆转录过程对末端DNA链进行延长。(既有模板,又有逆转录酶)以自身的RNA为模板延长DNA单链,然后反折为双链。端粒酶与生物体的衰老、肿瘤的发生有关。,端粒酶的作用机制,DNA复制的保真性:为了保证遗传的稳定,DNA的复制必须具有高保真性。DNA复制时的保真性主要与下列因素有关:1遵守严格的碱基配对规律;2DNA聚合酶在复制
9、时对碱基的正确选择;3对复制过程中出现的错误及时进行校正。,二、DNA的损伤与修复,(一)、DNA的损伤(突变)由自发的或环境的因素引起DNA一级结构的任何异常的改变称为DNA的损伤,也称为突变。常见的DNA的损伤包括碱基脱落、碱基修饰、交联,链的断裂,重组等。,引起突变的因素:1自发因素:2物理因素:由紫外线、电离辐射、X射线等引起的DNA损伤。3化学因素:如亚硝酸与亚硝酸盐。,DNA突变的效应:1同义突变:基因突变导致mRNA密码子第三位碱基的改变但不引起密码子意义的改变,其翻译产物中的氨基酸残基顺序不变,但有时可引起翻译效率降低。2误义突变:基因突变导致mRNA密码子碱基被置换,其意义发
10、生改变,翻译产物中的氨基酸残基顺序发生改变。3无义突变:基因突变导致mRNA密码子碱基被置换而改变成终止密码子,引起多肽链合成的终止。4移码突变:基因突变导致mRNA密码子碱基被置换,引起突变点之后的氨基酸残基顺序全部发生改变。,(二)、DNA损伤的修复,DNA损伤的修复方式可分为直接修复和取代修复两大类。,错配修复,(一)直接修复:1光复活:这是一种广泛存在的修复作用。光复活能够修复任何嘧啶二聚体的损伤。其修复过程为:光复活酶识别嘧啶二聚体并与之结合形成复合物在300600nm可见光照射下,酶获得能量,将嘧啶二聚体的丁酰环打开,使之完全修复光复活酶从DNA上解离。,2转甲基作用:在转甲基酶的
11、催化下,将DNA上的被修饰的甲基去除。此时,转甲基酶自身被甲基化而失活。3直接连接:DNA断裂形成的缺口,可以在DNA连接酶的催化下,直接进行连接而封闭缺口。,(二)取代修复:1切除修复:这也是一种广泛存在的修复机制,可适用于多种DNA损伤的修复。该修复机制可以分别由两种不同的酶来发动,一种是核酸内切酶,另一种是DNA糖苷酶。,内,2重组修复:这是DNA的复制过程中所采用的一种有差错的修复方式。,3.错配修复 DNA 在复制过程中发生错配,如果新合成的链被矫正,基因编码信息可得到恢复;但如果模板链被矫正,基因突变就被固定。,第二节 RNA的生物合成和加工,一、DNA指导下的RNA 合成转录:D
12、NA指导下的RNA 合成 在RNA聚合酶的催化下,以一段DNA链为模板合成RNA,从而将DNA所携带的遗传信息传递给RNA的过程称为转录。,RNA转录合成时,只能以DNA分子中的某一段作为模板,故存在特定的起始位点和特定的终止位点.特定起始点和特定终止点之间的DNA链构成一个转录单位。启动子终止子,DNA指导的RNA聚合酶,单链DNA为模板,Mg2+四种核糖核苷三磷酸(NTP)为底物不需要引物从53聚合RNA无校正功能,转录的不对称性,转录的不对称性就是指以双链DNA中的一条链作为模板进行转录,从而将遗传信息由DNA传递给RNA。,对于不同的基因来说,其转录信息可以存在于两条不同的DNA链上。
13、能够转录RNA的那条DNA链称为负链(模板链),而与之互补的另一条DNA链称为正链(编码链)。,模板链,编码链,5,5,3,3,5,5,RNA转录合成时,只能向一个方向进行聚合,所依赖的模板DNA链的方向为35,而RNA链的合成方向为53。合成的RNA中,如只含一个基因的遗传信息,称为单顺反子;如含有几个基因的遗传信息,则称为多顺反子。,原核生物中的RNA聚合酶全酶由五个亚基构成,即2。亚基与转录起始点的识别有关,而在转录合成开始后被释放,余下的部分(2)被称为核心酶,与RNA链的聚合有关。,真核生物中的RNA聚合酶可按其对-鹅膏蕈碱敏感性而分为三种,它们均由1012个大小不同的亚基所组成,结
14、构非常复杂,其功能也不同。,RNA转录合成的基本过程,1、识别原核生物RNA聚合酶中的因子识别转录起始点,并促使核心酶结合形成全酶复合物。位于基因上游,与RNA聚合酶识别、结合并起始转录有关的一些DNA顺序称为启动子原核生物的两个启动子:-10序列和-35序列。RNA聚合酶与启动子结合后,可开始转录。,原核生物启动子,TGTTGACA,TATAAT,-10区,-35区,启动子,转录起始部位,+1,基因转录区,5,RNA 产物,5,5,3,3,编码链,模板链,真核生物的转录起始区上游也存在一段富含TA的顺序,被称为Hogness盒或TATA盒。除此之外,在真核生物中还可见到其他带共性的序列,如C
15、AAT盒及GC盒等。真核生物的转录起始较为复杂。,真核生物的转录起始较为复杂。目前已知RNA聚合酶至少有六种不同的蛋白因子参与转录复合体的形成。这些蛋白因子被称为转录因子(trans-criptional factor,TF)。包括 TFA,TFB,TFD,TFE,TFF,TF-I。,转录因子 功 能TFA 稳定TFD结合TFB 促进pol 结合TFD 辨认TATA盒TFE ATPase TFF 解旋酶,真核生物RNA聚合酶转录因子及其功能,2、起始RNA聚合酶全酶促使局部双链解开,并催化ATP或GTP与另外一个三磷酸核苷聚合,形成第一个3,5-磷酸二酯键。,3、延长因子从全酶上脱离,余下的核
16、心酶继续沿DNA链移动,按照碱基互补原则,不断聚合RNA。,4、终止终止子:提供转录终止信号的DNA序列。RNA转录合成的终止机制有两种:1自动终止:模板DNA链在接近转录终止点处存在相连的富含GC和AT的区域,使RNA转录产物形成寡聚U及发夹形的二级结构,引起RNA聚合酶变构及移动停止,导致RNA转录的终止。2依赖辅助因子的终止:由终止因子(因子)识别特异的终止信号,并促使RNA的释放。,二、RNA的转录后加工,原核生物的mRNA不需要翻译前修饰,但tRNA 和rRNA需转录后加工。加工方式有切断、化学修饰等。rRNA前体分子被切割成成熟的23S、16S和5S rRNA以及一个tRNA,tR
17、NA也是切割前体分子生成。rRNA和tRNA还要进行化学修饰,如甲基化。,16S rRNA,23S rRNA,5S rRNA,tRNA,RNA前体分子,真核生物中RNA的加工,mRNA的转录后加工1加帽即在mRNA的5-端加上m7GTP的结构。此过程发生在合成一结束,在细胞核内。加工过程首先是在磷酸酶的作用下,将5-端的磷酸基水解,然后再加上鸟苷三磷酸,形成GpppN的结构,再对G进行甲基化。该帽可使RNA免受核酸酶降解,还在蛋白质合成的起始步骤中起作用。,2加尾这一过程也是细胞核内完成,首先由核酸外切酶切去3-端一些过剩的核苷酸,然后再加入polyA。polyA结构与mRNA的半寿期有关。多
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- DNA 复制 RNA 转录 蛋白质 翻译
链接地址:https://www.31ppt.com/p-5427656.html