《D127高阶线性微分方程.ppt》由会员分享,可在线阅读,更多相关《D127高阶线性微分方程.ppt(24页珍藏版)》请在三一办公上搜索。
1、2023/7/5,阜师院数科院,机动 目录 上页 下页 返回 结束,高阶线性微分方程解的结构,第七节,二、线性齐次方程解的结构,三、线性非齐次方程解的结构,*四、常数变易法,一、二阶线性微分方程举例,第十二章,2023/7/5,阜师院数科院,一、二阶线性微分方程举例,当重力与弹性力抵消时,物体处于 平衡状态,例1.质量为m的物体自由悬挂在一端固定的弹簧上,力作用下作往复运动,解:,阻力的大小与运动速度,下拉物体使它离开平衡位置后放开,若用手向,物体在弹性力与阻,取平衡时物体的位置为坐标原点,建立坐标系如图.,设时刻 t 物位移为 x(t).,(1)自由振动情况.,弹性恢复力,物体所受的力有:,
2、(虎克定律),成正比,方向相反.,建立位移满足的微分方程.,机动 目录 上页 下页 返回 结束,2023/7/5,阜师院数科院,据牛顿第二定律得,则得有阻尼自由振动方程:,阻力,(2)强迫振动情况.,若物体在运动过程中还受铅直外力,则得强迫振动方程:,机动 目录 上页 下页 返回 结束,2023/7/5,阜师院数科院,求电容器两两极板间电压,例2.,联组成的电路,其中R,L,C 为常数,所满足的微分方程.,提示:设电路中电流为 i(t),上的电量为 q(t),自感电动势为,由电学知,根据回路电压定律:,设有一个电阻 R,自感L,电容 C 和电源 E 串,极板,机动 目录 上页 下页 返回 结束
3、,在闭合回路中,所有支路上的电压降为 0,2023/7/5,阜师院数科院,串联电路的振荡方程:,如果电容器充电后撤去电源(E=0),则得,机动 目录 上页 下页 返回 结束,化为关于,的方程:,故有,2023/7/5,阜师院数科院,n 阶线性微分方程的一般形式为,方程的共性,为二阶线性微分方程.,例1,例2,可归结为同一形式:,时,称为非齐次方程;,时,称为齐次方程.,复习:一阶线性方程,通解:,非齐次方程特解,齐次方程通解Y,机动 目录 上页 下页 返回 结束,2023/7/5,阜师院数科院,证毕,二、线性齐次方程解的结构,是二阶线性齐次方程,的两个解,也是该方程的解.,证:,代入方程左边,
4、得,(叠加原理),定理1.,机动 目录 上页 下页 返回 结束,2023/7/5,阜师院数科院,说明:,不一定是所给二阶方程的通解.,例如,是某二阶齐次方程的解,也是齐次方程的解,并不是通解,但是,则,为解决通解的判别问题,下面引入函数的线性相关与,线性无关概念.,机动 目录 上页 下页 返回 结束,2023/7/5,阜师院数科院,定义:,是定义在区间 I 上的,n 个函数,使得,则称这 n个函数在 I 上线性相关,否则称为线性无关.,例如,,在(,)上都有,故它们在任何区间 I 上都线性相关;,又如,,若在某区间 I 上,则根据二次多项式至多只有两个零点,必需全为 0,可见,在任何区间 I
5、上都 线性无关.,若存在不全为 0 的常数,机动 目录 上页 下页 返回 结束,2023/7/5,阜师院数科院,两个函数在区间 I 上线性相关与线性无关的充要条件:,线性相关,存在不全为 0 的,使,线性无关,常数,思考:,中有一个恒为 0,则,必线性,相关,(证明略),线性无关,机动 目录 上页 下页 返回 结束,2023/7/5,阜师院数科院,定理 2.,是二阶线性齐次方程的两个线,性无关特解,则,数)是该方程的通解.,例如,方程,有特解,且,常数,故方程的通解为,(自证),推论.,是 n 阶齐次方程,的 n 个线性无关解,则方程的通解为,机动 目录 上页 下页 返回 结束,2023/7/
6、5,阜师院数科院,三、线性非齐次方程解的结构,是二阶非齐次方程,的一个特解,Y(x)是相应齐次方程的通解,定理 3.,则,是非齐次方程的通解.,证:将,代入方程左端,得,复习 目录 上页 下页 返回 结束,2023/7/5,阜师院数科院,是非齐次方程的解,又Y 中含有,两个独立任意常数,例如,方程,有特解,对应齐次方程,有通解,因此该方程的通解为,证毕,因而 也是通解.,机动 目录 上页 下页 返回 结束,2023/7/5,阜师院数科院,定理 4.,分别是方程,的特解,是方程,的特解.(非齐次方程之解的叠加原理),定理3,定理4 均可推广到 n 阶线性非齐次方程.,机动 目录 上页 下页 返回
7、 结束,2023/7/5,阜师院数科院,定理 5.,是对应齐次方程的 n 个线性,无关特解,给定 n 阶非齐次线性方程,是非齐次方程的特解,则非齐次方程,的通解为,齐次方程通解,非齐次方程特解,机动 目录 上页 下页 返回 结束,2023/7/5,阜师院数科院,常数,则该方程的通解是().,设线性无关函数,都是二阶非齐次线,性方程,的解,是任意,例3.,提示:,都是对应齐次方程的解,二者线性无关.(反证法可证),(89 考研),机动 目录 上页 下页 返回 结束,2023/7/5,阜师院数科院,例4.,已知微分方程,个解,求此方程满足初始条件,的特解.,解:,是对应齐次方程的解,且,常数,因而
8、线性无关,故原方程通解为,代入初始条件,故所求特解为,有三,机动 目录 上页 下页 返回 结束,2023/7/5,阜师院数科院,*四、常数变易法,复习:,常数变易法:,对应齐次方程的通解:,设非齐次方程的解为,代入原方程确定,对二阶非齐次方程,情形1.已知对应齐次方程通解:,设的解为,由于有两个待定函数,所以要建立两个方程:,机动 目录 上页 下页 返回 结束,2023/7/5,阜师院数科院,令,于是,将以上结果代入方程:,得,故,的系数行列式,P10 目录 上页 下页 返回 结束,2023/7/5,阜师院数科院,积分得:,代入 即得非齐次方程的通解:,于是得,说明:,将的解设为,只有一个必须
9、满足的条件即方程,因此必需再附加一,个条件,方程的引入是为了简化计算.,机动 目录 上页 下页 返回 结束,2023/7/5,阜师院数科院,情形2.,仅知的齐次方程的一个非零特解,代入 化简得,设其通解为,积分得,(一阶线性方程),由此得原方程的通解:,代入 目录 上页 下页 返回 结束,2023/7/5,阜师院数科院,例5.,的通解为,的通解.,解:将所给方程化为:,已知齐次方程,求,利用,建立方程组:,积分得,故所求通解为,目录 上页 下页 返回 结束,2023/7/5,阜师院数科院,例6.,的通解.,解:,对应齐次方程为,由观察可知它有特解:,令,代入非齐次方程后化简得,此题不需再作变换.,特征根:,设的特解为,于是得的通解:,故原方程通解为,(二阶常系数非齐次方程),代入可得:,机动 目录 上页 下页 返回 结束,2023/7/5,阜师院数科院,思考与练习,P300 题1,3,4(2),(5),作业 P 301*6,*8,第八节 目录 上页 下页 返回 结束,
链接地址:https://www.31ppt.com/p-5426688.html