D114对面积曲面积分(IV).ppt
《D114对面积曲面积分(IV).ppt》由会员分享,可在线阅读,更多相关《D114对面积曲面积分(IV).ppt(28页珍藏版)》请在三一办公上搜索。
1、,第四节,一、对面积的曲面积分的概念与性质,二、对面积的曲面积分的计算法,对面积的曲面积分,第十一章,一、对面积的曲面积分的概念与性质,引例:设曲面形构件具有连续面密度,类似求平面薄板质量的思想,采用,可得,求质,“大化小,常代变,近似和,求极限”,的方法,量 M.,其中,表示 n 小块曲面的直径的,(曲面的直径为其上任意两点间距离的最大者).,最大值,定义:,设 为光滑曲面,“乘积和式极限”,都存在,的曲面积分,其中 f(x,y,z)叫做被积,据此定义,曲面形构件的质量为,曲面面积为,f(x,y,z)是定义在 上的一,个有界函数,或第一类曲面积分.,若对 做任意分割和局部区域任意取点,则称此
2、极限为函数 f(x,y,z)在曲面 上对面积,函数,叫做积分曲面.,则对面积的曲面积分存在.,对积分域的可加性.,则有,线性性质.,在光滑曲面 上连续,对面积的曲面积分与对弧长的曲线积分性质类似.,积分的存在性.,若 是分片光滑的,例如分成两,片光滑曲面,定理:设有光滑曲面,f(x,y,z)在 上连续,存在,且有,二、对面积的曲面积分的计算法,则曲面积分,证明:由定义知,而,(光滑),说明:,可有类似的公式.,1)如果曲面方程为,2)若曲面为参数方程,只要求出在参数意义下dS,的表达式,也可将对面积的曲面积分转化为对参数的,二重积分.(见本节后面的例4,例5),例1.计算曲面积分,其中 是球面
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- D114 面积 曲面 积分 IV
链接地址:https://www.31ppt.com/p-5426645.html