CH5第3讲人工神经网络.ppt
《CH5第3讲人工神经网络.ppt》由会员分享,可在线阅读,更多相关《CH5第3讲人工神经网络.ppt(42页珍藏版)》请在三一办公上搜索。
1、人工神经网络方法及应用,引 言,利用机器模仿人类的智能是长期以来人们认识自然、改造自然和认识自身的理想。研究ANN目的:(1)探索和模拟人的感觉、思维和行为的规律,设计具有人类智能的计算机系统。(2)探讨人脑的智能活动,用物化了的智能来考察和研究人脑智能的物质过程及其规律。,研究ANN方法,(1)生理结构的模拟:用仿生学观点,探索人脑的生理结构,把对人脑的微观结构及其智能行为的研究结合起来即人工神经网络(Artificial Neural Netwroks,简称ANN)方法。(2)宏观功能的模拟:从人的思维活动和智能行为的心理学特性出发,利用计算机系统来对人脑智能进行宏观功能的模拟,即符号处理
2、方法。,ANN的研究内容,(1)理论研究:ANN模型及其学习算法,试图从数学上描述ANN的动力学过程,建立相应的ANN模型,在该模型的基础上,对于给定的学习样本,找出一种能以较快的速度和较高的精度调整神经元间互连权值,使系统达到稳定状态,满足学习要求的算法。(2)实现技术的研究:探讨利用电子、光学、生物等技术实现神经计算机的途径。(3)应用的研究:探讨如何应用ANN解决实际问题,如模式识别、故障检测、智能机器人等。,人工神经网络概述,什么是人工神经网络?T.Koholen的定义:“人工神经网络是由 具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的
3、交互反应。”,脑神经信息活动的特征,(1)巨量并行性。(2)信息处理和存储单元结合在一起。(3)自组织自学习功能。,ANN研究的目的和意义,(1)通过揭示物理平面与认知平面之间的映射,了解它们相互联系和相互作用的机理,从而揭示思维的本质,探索智能的本源。(2)争取构造出尽可能与人脑具有相似功能的计算机,即ANN计算机。(3)研究仿照脑神经系统的人工神经网络,将在模式识别、组合优化和决策判断等方面取得传统计算机所难以达到的效果。,神经网络研究的发展,(1)第一次热潮(40-60年代未)1943年,美国心理学家W.McCulloch和数学家W.Pitts在提出了一个简单的神经元模型,即MP模型。1
4、958年,F.Rosenblatt等研制出了感知机(Perceptron)。(2)低潮(70-80年代初):(3)第二次热潮 1982年,美国物理学家J.J.Hopfield提出Hopfield模型,它是一个互联的非线性动力学网络他解决问题的方法是一种反复运算的动态过程,这是符号逻辑处理方法所不具备的性质.1987年首届国际ANN大会在圣地亚哥召开,国际ANN联合会成立,创办了多种ANN国际刊物。1990年12月,北京召开首届学术会议。,神经网络基本模型,ANN类型与功能,人工神经网络研究的局限性,(1)ANN研究受到脑科学研究成果的限制。(2)ANN缺少一个完整、成熟的理论体系。(3)ANN
5、研究带有浓厚的策略和经验色彩。(4)ANN与传统技术的接口不成熟。,一般而言,ANN与经典计算方法相比并非优越,只有当常规方法解决不了或效果不佳时ANN方法才能显示出其优越性。尤其对问题的机理不甚了解或不能用数学模型表示的系统,如故障诊断、特征提取和预测等问题,ANN往往是最有利的工具。另一方面,ANN对处理大量原始数据而不能用规则或公式描述的问题,表现出极大的灵活性和自适应性。,神经网络的应用,人工神经网络以其具有自学习、自组织、较好的容错性和优良的非线性逼近能力,受到众多领域学者的关注。在实际应用中,80%90%的人工神经网络模型是采用误差反传算法或其变化形式的网络模型(简称BP网络),目
6、前主要应用于函数逼近、模式识别、分类和数据压缩或数据挖掘。,李一平(河海大学环境科学与工程学院).太湖生态系统的人工神经网络模拟研究,环境科学与技术,2004年第二期 构造了具有3层节点的人工神经网络模型,将太湖2001年512月全湖共26个采样点的实测值作为学习样本,一共有268=208组数据。从这些数据中分别随机抽取1/4的数据各52组作为检验样本和测试样本,其余的104组(占50%)数据作为训练样本。每个样本均含有12个输入因子,分别是风速、风向、水温、高锰酸钾指数、浊度、叶绿素、透明度、5。以浮游植物作为输出因子。用2002年8月的各点的浮游植物数据进行预测比较,,BP网络建模特点:非
7、线性映照能力:神经网络能以任意精度逼近任何非线性连续函数。在建模过程中的许多问题正是具有高度的非线性。并行分布处理方式:在神经网络中信息是分布储存和并行处理的,这使它具有很强的容错性和很快的处理速度。自学习和自适应能力:神经网络在训练时,能从输入、输出的数据中提取出规律性的知识,记忆于网络的权值中,并具有泛化能力,即将这组权值应用于一般情形的能力。神经网络的学习也可以在线进行。数据融合的能力:神经网络可以同时处理定量信息和定性信息,因此它可以利用传统的工程技术(数值运算)和人工智能技术(符号处理)。多变量系统:神经网络的输入和输出变量的数目是任意的,对单变量系统与多变量系统提供了一种通用的描述
8、方式,不必考虑各子系统间的解耦问题。,基本BP网络的拓扑结构,b1,bi,a1,c1,cq,cj,ah,bp,an,Wp1,Wiq,Wpj,W1q,W1j,Wij,V11,W11,Wpq,Wi1,Vh1,Vhi,V1i,Vn1,Vni,V1p,Vhp,Vnp,输出层LC,隐含层LB,输入层LA,W,V,输入函数,输入区的功能是将输入信号b的各分量以一定的规则综合成一个总输入值p,不同的网络和不同性质的神经元采用不同的综合规则,综合规则可以形式化为用某个输入函数表示,最常用的输入函数是“加权和”形式,如下所示:,活化函数,活化函数分为线性与非线性,最简单的线性活化函数就可以采用恒同函数;而非线性
9、活化函数中的常用函数即是Sigmoid函数,具有这种活化功能的神经元组成的神经网络具有强大的表达能力。a=g(p)=1/(1+exp(-cp),前馈式神经网络,各种神经元以层状方式组成前馈式神经网络。每一层由多个节点(神经元)组成,每层中的节点与相邻层中的节点通过权值连接;但与同层中的其他节点和非相邻层中的节点没有连接。第一层为输入层,最后一层为输出层,中间为隐层。神经元的输入函数为“加权和“的形式,输出函数为恒同函数,活化函数为S型函数。,前馈式神经网络的逼近能力,前馈式神经网络的输入输出关系,可以看成是一种映射关系,即每一组输入对应着一组输出。由于网络中神经元的活化函数的非线性,使网络实现
10、的是复杂的非线性映射。Hornik的等人的研究还表明三层前馈式神经网络不仅能以任意精度逼近任意函数,还能以任意精度逼近其各阶导数。,BP算法,Rumelhart和McClelland领导的PDP小组提出了前馈式神经网络的学习算法,即BP算法,解决了多层网络的学习问题,从实践上证实了人工神经网络具有很强的运算能力,使BP算法成为前馈式神经网络的经典算法。,BP算法,BP算法采用的是最速下降法,它使期望输出与实际输出之间的误差平方和最小,即,权值修正公式,BP算法的不足,1 收敛速度非常缓慢 2 初始值比较敏感 3权值调节路径常常呈现锯齿型,1.样本数据1.1 收集和整理分组 采用BP神经网络方法
11、建模的首要和前提条件是有足够多典型性好和精度高的样本。而且,为监控训练(学习)过程使之不发生“过拟合”和评价建立的网络模型的性能和泛化能力,必须将收集到的数据随机分成训练样本、检验样本(10%以上)和测试样本(10%以上)3部分。此外,数据分组时还应尽可能考虑样本模式间的平衡。,1.2 输入/输出变量的确定及其数据的预处理 一般地,BP网络的输入变量即为待分析系统的内生变量(影响因子或自变量)数,一般根据专业知识确定。若输入变量较多,一般可通过主成份分析方法压减输入变量,也可根据剔除某一变量引起的系统误差与原系统误差的比值的大小来压减输入变量。输出变量即为系统待分析的外生变量(系统性能指标或因
12、变量),可以是一个,也可以是多个。一般将一个具有多个输出的网络模型转化为多个具有一个输出的网络模型效果会更好,训练也更方便。,由于BP神经网络的隐层一般采用Sigmoid转换函数,为提高训练速度和灵敏性以及有效避开Sigmoid函数的饱和区,一般要求输入数据的值在01之间。因此,要对输入数据进行预处理。一般要求对不同变量分别进行预处理,也可以对类似性质的变量进行统一的预处理。如果输出层节点也采用Sigmoid转换函数,输出变量也必须作相应的预处理,否则,输出变量也可以不做预处理。预处理的方法有多种多样,各文献采用的公式也不尽相同。但必须注意的是,预处理的数据训练完成后,网络输出的结果要进行反变
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- CH5 人工 神经网络
链接地址:https://www.31ppt.com/p-5421439.html