CH2信号的分析与处理.ppt
《CH2信号的分析与处理.ppt》由会员分享,可在线阅读,更多相关《CH2信号的分析与处理.ppt(66页珍藏版)》请在三一办公上搜索。
1、第2章 信号的分析与处理Signal Analysis and Processing,2.0 序(Introduction)2.1 信号的时域分析(Signal Analysis in Time Domain)2.2 信号的相关分析(Signal Correlation)2.3 信号的频域分析(Signal Analysis in Frequency Domain)2.4 数字信号处理基础(Basic of Digital Signal Processing),返回,第2章 信号的分析与处理,信号分析与处理的目的:1)剔除信号中的噪声和干扰,即提高信噪比;2)消除测量系统的误差,修正畸变的波形
2、;3)强化、突出有用信息,削弱无用部分;4)将信号加工、处理、变换,以便更容易识别和分析信号的特征,解释被测对象所表现的各种物理现象。,2.0 序(Introduction),信号分析和信号处理是密切相关的,二者并没有明确的界限。本章重点讨论频域分析。信号分析和处理的方法主要有模拟分析方法和数字处理分析方法。数字信号处理可以在专用计算机上进行,也可以在通用计算机上实现。,序,2.1 信号的时域分析(Signal Analysis in Time Domain),离散时间序列统计参数,2.1.1 特征值分析,离散信号的绝对平均值(absolute mean),离散信号的均值(mean)N 为离散
3、点数,离散信号的均方值(mean square),信号的均方根值(root of mean square),即为有效值,离散信号的方差(variance),信号的时域分析,特征值分析的应用,信号的时域分析,旋转机械振动标准,2.1.2 概率密度(probability density)函数分析,正弦信号,正弦加随机噪声,窄带随机信号,宽带随机信号,概率密度函数,常见信号的概率密度函数:,信号的时域分析,正态分布随机信号的概率密度函数,正态分布又叫高斯分布,是概率密度函数中最重要的一种分布。,因此,,信号的时域分析,2.2 信号的相关分析(Signal Correlation Analysis)
4、,2.2.1 相关系数,x与y变量的相关性,不相关,相关,0,0,0,变量x和y之间的相关程度常用相关系数表示:,由柯西-许瓦兹不等式,所以,,信号的相关分析,2.2.2 自相关(self-correlation)分析,相关系数,信号的相关分析,自相关函数定义,周期信号:,非周期信号:,进一步,对于周期信号和非周期信号有:,信号的相关分析,自相关函数的性质,自相关函数为实偶函数,证明:,信号的相关分析,自相关函数的性质,信号的相关分析,周期函数的自相关函数仍为同频率的周期函数,例2.1 求正弦函数 的自相关函数。,把,解:,代入,信号的相关分析,,,2.2.3 互相关(cross-correl
5、ation)分析,互相关函数的概念,互相关系数,互相关函数,信号的相关分析,互相关函数的性质,1)互相关函数是可正、可负的实函数。,2)互相关函数非偶函数、亦非奇函数,具有关系,因为:,信号的相关分析,3)的峰值不在 处,其峰值偏离原点的位置反映了两信号时移的大小,相关程度最高。,互相关函数的性质,信号的相关分析,5)两个统计独立的随机信号,当均值为零时,则,信号的相关分析,4)互相关函数的限制范围为,证明,有上述结论。,6)两个不同频率的周期信号,其互相关为零。,0,7)周期信号与随机信号的互相关函数为零。,信号的相关分析,例2.2 求两个同频率的正弦函数 和 的互相关函数。,解:因为信号是
6、周期函数,可以用一个共同周期内的平均值代替其整个历程的平均值,故,信号的相关分析,d,速度v,透镜,光电池,可调延迟,相关器,钢带,0,信号的相关分析,钢带运动速度的非接触测量,相关分析在故障诊断中的应用,信号的相关分析,x1(t),x2(t),t,s,2.3 信号的频域分析(Signal Analysis in Frequency Domain),信号的时域描述反映了信号幅值随时间变化的特征;相关分析从时域为在噪声背景下提取有用信息提供了手段;信号的频域描述反映了信号的频率结构和各频率成分的幅值大小;功率谱密度函数、相干函数、倒谱分析则从频域为研究平稳随机过程提供了重要方法。,2.3.1 巴
7、塞伐尔(Paseval)定理,信号在时域中的总能量与信号在频域中的总能量相等,由卷积定理,即,令,令,信号的频域分析,,则,功率谱(power spectrum)分析及其应用,定义随机信号的自功率谱密度函数(自谱)为,其逆变换为,定义两随机信号的互功率谱密度函数(互谱)为,其逆变换为,信号的频域分析,功率谱密度函数的物理意义,表示信号的功率密度沿频率轴的分布,故又称为功率谱密度函数。,信号的频域分析,自功率谱密度函数 和幅值谱 及能谱之间的关系,由巴塞伐尔定理:,由功率谱定义:,因此,有,信号的频域分析,自功率谱密度函数是偶函数,它的频率范围,又称双边自功率谱密度函数。它在频率范围的函数值是其
8、在 频率范围函数值的对称映射,因此。,单边谱和双边谱,信号的频域分析,0,f,功率谱的应用,1)自功率谱密度 与幅值谱 及系统频率响应函数 的关系,信号的频域分析,若,信号的频域分析,输入/输出自功率谱密度函数与系统频率响应函数关系,通过输入、输出自谱的分析,就能得出系统的幅频特性。但这样的谱分析丢失了相位信息,不能得出系统的相频特性。,单输入、单输出的理想线性系统,信号的频域分析,2)互谱排除噪声影响,由于输入和噪声是独立无关的,,信号的频域分析,+,+,+,+,+,+,+,+,+,3)功率谱在设备诊断中的应用,汽车变速箱上加速度信号的功率谱图,正常,异常,故障频率,信号的频域分析,(a),
9、(b),4)瀑布(water fall)图,信号的频域分析,5)坎贝尔(Canbel)图,信号的频域分析,2.3.3 相干函数(coherence function),相干函数为零-输出信号与输入信号不相干。相干函数为1-输出与输入信号完全相干。相干函数在01之间-有如下三种可能:测试中有外界噪声干扰;输出是输入和其他输入的综合输出;系统是非线性的。,对于线性系统,信号的频域分析,油压脉动与油管振动的相干分析,压油管压力脉动的基频,润滑油泵转速为n=781 r/min,油泵齿轮的齿数为z=14,信号的频域分析,(a)信号x(t)的自谱,(b)信号y(t)的自谱,(c)相干函数,2.3.4 倒谱
10、(cepstrum)分析,倒频谱分析亦称为二次频谱分析检测复杂信号频谱上的周期结构,分离和提取在密集泛频谱信号中周期成分,功率倒频谱函数,与自相关函数比较,信号的频域分析,幅值倒频谱函数,也可以定义为,倒频谱的应用(1)分离信息通道对信号的影响,在机械状态监测和故障诊断中所测得的信号往往是由故障源经系统路径的传输而得到的响应,如欲得到该源信号,必须消除传递通道的影响。,信号的频域分析,信号的频域分析,(2)用倒频谱诊断齿轮故障,齿轮的振动,转轴频率,啮合频率,功率谱,倒谱,信号的频域分析,信号的频域分析,利用FFT频谱分析,将复杂的波形转换成频谱,以便进一步了解振动的构成原因。,0,2.4 数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- CH2 信号 分析 处理
链接地址:https://www.31ppt.com/p-5421264.html