ch1正交试验设计.ppt
《ch1正交试验设计.ppt》由会员分享,可在线阅读,更多相关《ch1正交试验设计.ppt(89页珍藏版)》请在三一办公上搜索。
1、第一章 正交试验设计,目的与要求:学会使用正交设计法优选影响实验的各个因素,减少实验次数,节约人力物力。,正交试验设计(Orthogonal Design)是于二十世纪50年代初期,由日本质量管理专家田口玄一(Tachugi)博士提出的在多因素试验设计方法的基础上,进一步研究开发出来的一种试验设计技术。,正交试验设计法使用一种规范化的表格(正交表)进行试验设计,可以用较少的试验次数,取得较为准确、可靠的优选结论。正交试验设计主要可以完成:,确定出各因素对试验指标的影响规律,得知哪些因素的影响是主要的、哪些因素的影响是次要的、哪些因素之间存在相互影响;选出各因素的一个水平组合来确定最佳生产条件。
2、,正交试验设计的基础是正交表。,试验设计例,为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的试验范围:A:80-90B:90-150分钟C:5-7试验目的是搞清楚因子A、B、C对转化率有什么影响,哪些是主要的,哪些是次要的,从而确定最适生产条件,即温度、时间及用碱量各为多 少才能使转化率高。试制定试验方案。,这里,对因子A,在试验范围内选了三个水平;因子B和C也都取三个水平:A:Al80,A285,A3=90B:Bl90分,B2120分,B3=150分C:Cl5,C26%,C37%当然,在正交试验设计中,因子可以是定量的,也
3、可以是定性的。而定量因子各水平间的距离可以相等,也可以不相等。这个三因子三水平的条件试验,通常有两种试验进行方法:,()取三因子所有水平之间的组合,即AlBlC1,A1BlC2,A1B2C1,A3B3C3,共有33=27次试验。用图表示就是图1 立方体的27个节点。这种试验法叫做全面试验法。,全面试验法的优缺点:,优点:对各因素于试验指标之间的关系剖析得比较清楚缺点:试验次数太多,费时、费事,当因素水平比较多时,试验无法完成。不做重复试验无法估计误差。无法区分因素的主次。例如选六个因素,每个因素选五个水平时,全面试验的数目是56 15625次。,()简单对比法 变化一个因素而固定其他因素,如首
4、先固定B、C于Bl、Cl,使A变化之:A1B1C1 A2 A3(好结果)如得出结果A3最好,则固定A于A3,C还是Cl,使B变化之:B1A3C1 B2(好结果)B3得出结果以B2为最好,则固定B于B2,A于A3,使C变化之:C1A3B2C2(好结果)C3试验结果以C2最好。于是就认为最好的工艺条件是A3B2C2。,简单比较法的优缺点:,优点:试验次数少缺点:(1)试验点不具代表性。考察的因素水平仅局限于局部区域,不能全面地反映因素的全面情况。(2)无法分清因素的主次。(3)如果不进行重复试验,试验误差就估计不出来,因此无法确定最佳分析条件的精度。(4)无法利用数理统计方法对试验结果进行分析,提
5、出展望好条件。,首先这种方法的选点代表性很差,如按上述方法进行试验,试验点完全分布在一个角上,而在一个很大的范围内没有选点。因此这种试验方法不全面,所选的工艺条件A3B2C2不一定是27个组合中最好的。其次,用这种方法比较条件好坏时,是把单个的试验数据拿来,进行数值上的简单比较,而试验数据中必然要包含着误差成分,所以单个数据的简单比较不能剔除误差的干扰,必然造成结论的不稳定。,正交试验的提出:考虑兼顾全面试验法和简单比较法的优点,利用根据数学原理制作好的规格化表正交表来设计试验不失为一种上策。如上例,对应于A有Al、A2、A3三个平面,对应于B、C也各有三个平面,共九个平面。则这九个平面上的试
6、验点都应当一样多,即对每个因子的每个水平都要同等看待。具体来说,每个平面上都有三行、三列,要求在每行、每列上的点一样多。这样,作出如图2所示的设计,试验点用表示。我们看到,在9个平面中每个平面上都恰好有三个点而每个平面的每行每列都有一个点,而且只有一个点,总共九个点。这样的试验方案,试验点的分布很均匀,试验次数也不多。,1.1 正交试验设计的基本概念,正交试验设计是利用正交表来安排与分析多因素试验的一种设计方法。它是由试验因素的全部水平组合中,挑选部分有代表性的水平组合进行试验的,通过对这部分试验结果的分析了解全面试验的情况,找出最优的水平组合。,例如,要考察增稠剂用量、pH值和杀菌温度对豆奶
7、稳定性的影响。每个因素设置3个水平进行试验。A因素是增稠剂用量,设A1、A2、A3 3个水平;B因素是pH值,设B1、B2、B3 3个水平;C因素为杀菌温度,设C1、C2、C3 3个水平。这是一个3因素3水平的试验,各因素的水平之间全部可能组合有27种。,全面试验:可以分析各因素的效应,交互作用,也可选出最优水平组合。但全面试验包含的水平组合数较多,工作量大,在有些情况下无法完成。若试验主要目的是寻求最优水平组合,则可利用正交表来设计安排试验。正交试验设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。,如对于上述3因素3水平试验,若不考虑交互作用,可利用
8、正交表L9(34)安排,试验方案仅包含9个水平组合,就能反映试验方案包含27个水平组合的全面试验的情况,找出最佳的生产条件。,1.2正交试验设计的基本原理,在试验安排中,每个因素在研究的范围内选几个水平,就好比在选优区内打上网格,如果网上的每个点都做试验,就是全面试验。如上例中,3个因素的选优区可以用一个立方体表示(图1-1),3个因素各取 3个水平,把立方体划分成27个格点,反映在 图1-1上就是立方体内的27个“.”。若27个网格点都试验,就是全面试验,其试验方案如表1-1所示。,表1-1,3 因 素 3 水 平 的 全 面试验水平组合数为33=27,4 因素3水平的全面试验水平组合数为3
9、4=81,5因素3水平的全面试验水平组合数为35=243,这在科学试验中是有可能做不到的。,正交设计就是从选优区全面试验点(水平组合)中挑选出有代表性的部分试验点(水平组合)来进行试验。图1-1中标有试验号的九个“()”,就是利用正交表L9(34)从27个试验点中挑选出来的9个试验点。即:(1)A1B1C1(2)A2B1C2(3)A3B1C3(4)A1B2C2(5)A2B2C3(6)A3B2C1(7)A1B3C3(8)A2B3C1(9)A3B3C2,上述选择,保证了A因素的每个水平与B因素、C因素的各个水平在试验中各搭配一次。对于A、B、C 3个因素来说,是在27个全面试验点中选择9个试验点,
10、仅是全面试验的三分之一。从图中可以看到,9个试验点在选优区中分布是均衡的,在立方体的每个平面上,都恰是3个试验点;在立方体的每条线上也恰有一个试验点。9个试验点均衡地分布于立方体内,有很强的代表性,能够比较全面地反映选优区内基本情况。,1.3 正交表及其基本性质,1.3.1 正交表 由于正交设计安排试验和分析试验结果都要用正交表,因此先对正交表作介绍。正交表 在设计安排正交试验时制作好的标准化的表格。表1-2是一正交表,记号为L8(27),其中“L”代表正交表;数字“8”表示有8行,用此正交表安排试验包含8个处理(水平组合);底数“2”表示因素的水平数,指数“7”表示有7列,用这张正交表最多可
11、以安排7个2水平因素。,表1-2,L4(23)正交表,L4(23),正交表代号,正交表行数,常用的正交表已由数学工作者制定出来,供进行正交设计时选用。2水平正交表除L8(27)外,还有L4(23)、L16(215)等;3水平正交表有L9(34)、L27(213)等。,1.3.2 正交表的特性 任何一张正交表都有如下两个特性:正交性(1)任一列中,不同数字出现的次数相等 例如L8(27)中不同数字只有1和2,它们各出现4次;L9(34)中不同数字有1、2和3,它们各出现3次。,下一张,主 页,退 出,上一张,(2)任两列中,同一横行所组成的数字对出现的次数相等。例如 L8(27)中(1,1),(
12、1,2),(2,1),(2,2)各出现两次;L9(34)中(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)各出现1次。即每个因素的一个水平与另一因素的各个水平互碰次数相等,表明任意两列各个数字之间的搭配是均匀的。,下一张,主 页,退 出,上一张,代表性 一方面:(1)任一列的各水平都出现,使得部分试验中包括了所有因素的所有水平;(2)任两列的所有水平组合都出现,使任意两因素间的试验组合为全面试验。另一方面:由于正交表的正交性,正交试验的试验点必然均衡地分布在全面试验点中,具有很强的代表性。因此,部分试验寻找的最优条件与全面试验所找的最优
13、条件,应有一致的趋势。,1.3.2.3 综合可比性(1)任一列的各水平出现的次数相等;(2)任两列间所有水平组合出现次数相等,使得任一因素各水平的试验条件相同。这就保证了在每列因素各水平的效果中,最大限度地排除了其他因素的干扰。从而可以综合比较该因素不同水平对试验指标的影响情况。,根据以上两个特性,我们用正交表安排的试验,具有均衡分散和整齐可比的特点。所谓均衡分散,是指用正交表挑选出来的各因素水平组合在全部水平组合中的分布是均匀的。由 图1-1可以看出,在立方体中,任一平面内都包含 3 个“()”,任一直线上都包含1个“()”,因此,这些点代表性强,能够较好地反映全面试验的情况。,下一张,主
14、页,退 出,上一张,整齐可比是指每一个因素的各水平间具有可比性。因为正交表中每一因素的任一水平下都均衡地包含着另外因素的各个水平,当比较某因素不同水平时,其它因素的效应都彼此抵消。如在A、B、C 3个因素中,A因素的3个水平 A1、A2、A3 条件下各有 B、C 的 3 个不同水平,即:,在这9个水平组合中,A因素各水平下包括了B、C因素的3个水平,虽然搭配方式不同,但B、C皆处于同等地位,当比较A因素不同水平时,B因素不同水平的效应相互抵消,C因素不同水平的效应也相互抵消。所以A因素3个水平间具有可比性。同样,B、C因素3个水平间亦具有可比性。,下一张,主 页,退 出,上一张,正交表的三个基
15、本性质中,正交性是核心,是基础,代表性和综合可比性是正交性的必然结果。,1.4 正交表的类别,1、等水平正交表 各列水平数相同的正交表称为等水平正交表。如L4(23)、L8(27)、L12(211)等各列中的水平为2,称为2水平正交表;L9(34)、L27(313)等各列水平为3,称为3水平正交表。,1.4 正交表的类别,2、混合水平正交表 各列水平数不完全相同的正交表称为混合水平正交表。如L8(424)表中有一列的水平数为4,有4列水平数为2。也就是说该表可以安排一个4水平因素和4个2水平因素。再如L16(4423),L16(4212)等都混合水平正交表。,1.5正交试验设计的基本程序,对于
16、多因素试验,正交试验设计是简单常用的一种试验设计方法,其设计基本程序如图所示。正交试验设计的基本程序包括试验方案设计及试验结果分析两部分。,试验目的与要求,试验指标,选因素、定水平,因素、水平确定,选择合适正交表,表头设计,列试验方案,试验方案设计:,试验结果分析,进行试验,记录试验结果,试验结果极差分析,计算K值,计算k值,计算极差R,绘制因素指标趋势图,优水平,因素主次顺序,优组合,结 论,试验结果分析:,试验结果方差分析,列方差分析表,进行F 检验,计算各列偏差平方和、自由度,分析检验结果,写出结论,试验方案设计,(1)明确试验目的,确定试验指标 试验设计前必须明确试验目的,即本次试验要
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ch1 正交 试验 设计

链接地址:https://www.31ppt.com/p-5421240.html