马尔科夫预测法.ppt
《马尔科夫预测法.ppt》由会员分享,可在线阅读,更多相关《马尔科夫预测法.ppt(88页珍藏版)》请在三一办公上搜索。
1、马尔柯夫预测,马尔柯夫(A.A Markov)预测法是应用概率论中马尔柯夫链的理论和方法来研究随机事件变化并借此分析预测未来变化趋势的一种方法。马尔柯夫链的基本理论基于马尔柯夫链基本理论的状态预测、市场占有率预测和人力资源结构预测方法。,5.1 基本概念,马尔柯夫(A.A Markov 俄国数学家)。20世纪初,他在研究中发现自然界中有一类事物的变化过程仅与事物的近期状况有关,而与事物的过去状态无关。例:设备维修和更新、人才结构变化、资金流向、市场需求变化等许多经济行为都可用这一类过程来描述或近似。所谓马尔柯夫链,就是一种随机时间序列,它在将来取什么值只与它现在的取值有关,而与它过去取什么值无
2、关,即无后效性。具备这个性质的离散型随机过程,称为马尔柯夫链。概念:状态?,1,2,3,1,2,3,基本概念4:状态、状态转移概率、状态转移概率矩阵、初始状态概率向量,一、状态与状态变量状态:客观事物可能出现或存在的状况。如:商品可能畅销也可能滞销;机器运转可能正常也可能故障等。同一事物不同状态之间必须相互独立:不能同时存在两种状态。客观事物的状态不是固定不变的,它可能处于这种状态,也可能处于那种状态,往往条件变化,状态也会发生变化。如某种产品在市场上本来是滞销的,但是由于销售渠道变化了,或者消费心理发生了变化等,它便可能变为畅销产品。,用状态变量来表示状态:它表示随机运动系统,在时刻 所处的
3、状态为状态转移:客观事物由一种状态到另一种状态的变化。如:由于产品质量或替代产品的变化,市场上产品可能由畅销变为滞销。,二、状态转移概率客观事物可能有 共 种状态,其中每次只能处于一种状态,则每一状态都具有 个转向(包括转向自身),即。由于状态转移是随机的,因此,必须用概率来描述状态转移可能性的大小,将这种转移的可能性用概率描述,就是状态转移概率。,概率论中的条件概率:P(AB)就表达了由状态 B 向状态 A 转移的概率,简称为状态转移概率。对于由状态 Ei 转移到状态Ej 的概率,称它为从 i 到 j 的转移概率。记为:它表示由状态Ei 经过一步转移到状态Ej 的概率。,某地区有甲、乙、丙三
4、家食品厂生产同一种食品,有一千个用户(或购货点),假定在研究期间无新用户加入也无老用户退出,只有用户的转移,已知 2006 年 5 月份有 500 户是甲厂的顾客;400 户是乙厂的顾客;100 户是丙厂的顾客。6 月份,甲厂有400 户原来的顾客,上月的顾客有 50 户转乙厂,50 户转丙厂;乙厂有 300 户原来的顾客,上月的顾客有 20 户转甲厂,80 户转丙厂;丙厂有 80 户原来的顾客,上月的顾客有 10 户转甲厂,10 户转乙厂。计算其状态转移概率。,例:,解:由题意得 6 月份顾客转移表 1:,从,到,表 1,例:,三、状态转移概率矩阵将事件 个状态的转移概率依次排列起来,就构成
5、一个 N行N 列的矩阵,这种矩阵就是状态转移概率矩阵。通常称矩阵 P 为 状态转移概率矩阵,没有特别说明步数时,一般均为一步转移概率矩阵。矩阵中的每一行称之为概率向量。转移概率矩阵的特征?,基本概念,状态转移概率矩阵具有如下特征:(1)(2),三、状态转移概率矩阵及其基本特征,状态转移概率的估算主观概率法(一般缺乏历史统计资料或资料不全情况下使用)统计估算法。,例 设味精市场的销售记录共有 6 年 24 个季度的数据,见表。求味精销售转移概率矩阵。,用“1”表示畅销用“2”表示滞销,共24个季度数据,其中有15个季度畅销,9个季度滞销,现分别统计出:连续畅销、由畅转滞、由滞转畅和连续滞销的次数
6、。以 p11 表示连续畅销的可能性,以频率代替概率,得:?分子 7 是表中连续出现畅销的次数,分母 15 是表中出现畅销的次数,因为第24季度是畅销,无后续记录,故减1。,2个状态:“1”畅销“2”滞销,以 p12 表示由畅销转入滞销的可能性:分子 7 是表中由畅销转入滞销的次数。以 p21 表示由滞销转入畅销的可能性:分子 7 是表中由滞销转入畅销的次数,分母数 9 是表中出现滞销的次数。,2个状态:“1”畅销“2”滞销,以 p22 表示连续滞销的可能性:分子 2 是表中连续出现滞销的次数。综上所述,得销售状态转移概率矩阵为:,状态转移概率矩阵完全描述了所研究对象的变化过程。正如前面所指出的
7、,上述矩阵为一步转移概率矩阵。对于多步转移概率矩阵,可按如下定义解释。定义 3.若系统在时刻 处于状态,经过 步转移,在时刻 处于状态。那么,对这种转移的可能性的数量描述称为 步转移概率。记为:并令,三、多步状态转移概率矩阵,称 为 步转移概率矩阵。多步转移概率矩阵,除具有一步转移概率矩阵的性质外,还具有以下的性质:,例:某经济系统有三种状态(如畅销、一般、滞销),系统地转移情况见下表,试求系统的二步状态转移概率矩阵。解:首先是写出一步状态转移,二步转移概率矩阵可由一步转移概率矩阵通过公式?计算求出:,由一步转移概率矩阵求出,由公式 计算得:,记 为过程的开始时刻,则称:为初始状态概率向量。已
8、知马尔科夫链的转移矩阵 以及初始状态概率向量,则任一时刻的状态概率分布也就确定了:对 k1,记 则由全概率公式有:,四、初始状态概率向量,若记向量,则上式可写为:由此可得,四、初始状态概率向量,例:一台机床的运行状态,机床运行存在正常和故障两种状态。由于出现故障带有随机性,故可将机床运行看作一个随时间变化的随机系统。机床以后的状态只与其以前的状态有关,而与过去的状态无关(有无后效性)。因此,机床的运行可看作马尔科夫链。如机床运行过程中出现故障,表示为从状态 1 转移到状态 2;处于故障状态的机床经维修恢复到正常状态即从状态 2 转移到状态1。现以1个月为时间单位,经统计知:从某月到下月机床出现
9、故障的概率为0.2,即 p12=0.2。保持正常状态的概率为为 p11=0.8。在这一时间,故障机床经维修返回正常状态的概率为 0.9,即 p21=0.9;不能修好的概率为 p22=0.1。,机床状态转移图,由机床的一步转移概率得:状态转移概率矩阵:,若已知本月机床的状态向量 P(0)=(0.85,0.15),要求预测机床两个月后的状态。,问题:知本月状态向量 P(0)=(0.85,0.15),预测两月后的状态。求出两步转移概率矩阵 预测:两个月后的状态向量,5.2 稳态概率矩阵:平稳分布与稳态分布,在马尔可夫链中,已知系统的初始状态和状态转移概率矩阵,就可推断出系统在任意时刻可能所处的状态。
10、现在需要研究当 k 不断增大时,P(k)的变化趋势。一、平稳分布 预备定义:如存在非零向量X=(x1,x2,xN),使得:X P=X 其中P为一概率矩阵,则称 X 为 P 的固定概率向量。,一、平稳分布,如存在非零向量 X=(x1,x2,xN),使得:X P=X 其中:P为一概率矩阵 则称 X 为 P 的固定概率向量。特别地,设 X=(x1,x2,xN)为一状态概率向量,P为状态转移概率矩阵,若 X P=X即:称 X 为该马尔可夫链的一个平稳分布 性质?,若随机过程某时刻的状态概率向量 P(k)为平稳分布,则称过程处于平衡状态。(X P=X)一旦过程处于平衡状态,则经过一步或多步状态转移之后,
11、其状态概率分布保持不变,也就是说,过程一旦处于平衡状态后将永远处于平衡状态。对于所讨论的状态有限(即N个状态)的马尔可夫链,平稳分布必定存在。特别地,当状态转移矩阵为正规概率矩阵时,平稳分布唯一。正规概率矩阵?,定义1:如果 P 为概率矩阵,且存在 m0,使 Pm 中诸元素皆非负非零。则称 P 为正规概率矩阵。例如:均为正规概率矩阵。P1为正规概率矩阵是明显的(m=1)P2是正规概率矩阵也也易于论证:即存在(m=2),使 P2 的元素皆非负非零。,是非正规概率矩阵。正规概率矩阵的这一性质很有实用价值。因为在市场占有率是达到平稳分布时,顾客(或用户)的流动将对市场占有率不起影响。即各市场主体丧失
12、的顾客(或用户)与争取到的顾客相抵消。,例:甲乙丙三个食品厂顾客的 32 步转移概率。,二、稳态分布,可以看到每一列都有相同的值。这说明不管初始状态三个食品厂占有多少顾客,经过32月之后处于状态 j 的概率都是相同的。即:经过多次转移之后,系统存在一个处于状态 j 的有限概率,此概率与系统原始状态无关。,二、稳态分布,对概率向量=(1,2,N),如对任意的 i,jS:则称 为稳态分布。此时,不管初始状态概率向量如何,均有,或这也是称 为稳态分布的理由。性质?,设存在稳态分布=(1,2,N),则由于下式恒成立:令k就得A:即有限状态马尔可夫链的稳态分布如存在,那么它也是平稳分布。B:当马尔科夫链
13、的状态转移概率矩阵为正规概率矩阵时稳态分布存在,且稳态分布和平稳分布相同且均唯一。,例:设一马尔可夫链的状态转移矩阵如下,求其平稳分布及稳态分布。,解:(1)P 是正规概率矩阵,即存在(m=2),使 P2 的元素皆非负非零。,(2)由于 P 是正规概率矩阵,求解如下方程组:,这就是该马尔可夫链的稳态分布,而且也是平稳分布。,5.3 马尔可夫链预测法,马尔可夫链预测方法的最简单类型是预测下期最可能出现的状态。步骤:第一步:划分预测对象所出现的状态。从预测目的出发,考虑决策需要来划分现象所处的状态。第二步:计算初始概率。据实际问题分析历史资料所得的状态概率称为初始概率。第三步:计算状态转移概率第四
14、步:根据转移概率进行预测 由状态转移概率矩阵 P:如果目前预测对象处于状态Ei,这时 Pij 就描述了目前状态 Ei 在未来将转向状态 Ej(j=1,2,N)的可能性。按最大可能性作为选择原则:选择(Pj1,Pj2,PjN)中最大者为预测结果。,例:某商店在最近20个月的商品销售量统计记录如下:,试预测第 21 期商品销售量。,解:1、划分状态:按盈利状况为标准(1)销售量60千件 属于滞销(2)60千件销售量100千件 属于一般(3)销售量100千件 属于畅销,2、计算初始概率 Pi 为使问题更为直观,绘制销售量散点图如下,并画出状态分界线。由图可算出处于:滞销状态的有:M1=7一般状态的有
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 马尔科夫 预测
链接地址:https://www.31ppt.com/p-5413768.html