平面向量的意义第1课.ppt
《平面向量的意义第1课.ppt》由会员分享,可在线阅读,更多相关《平面向量的意义第1课.ppt(87页珍藏版)》请在三一办公上搜索。
1、,平面向量一,已知两个力F1和F2同时作用在一个物体上,其中F1=40N,方向向东,F2=30N,方向向北,求它们的合力.,什么是向量?向量和数量有何不同?,向量:即有大小又有方向的量,(数量:只有大小,没有方向的量),在质量、重力、速度、加速度、身高、面积、体积这些量中,哪些是数量?哪些是向量?,数量有:质量、身高、面积、体积,向量有:重力、速度、加速度,2.向量如何表示?,几何表示向量常用有向线段表示:有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。,注:以A为起点,B为终点的有向线段记为 线段AB的长度记作(读为模);,也可以表示:,大小记作:,练习:1.温度有零上和零下之分
2、,温度是向量吗?为什么?,我们所说的向量,与起点无关,用有向线段表示向量时,起点可以取任意位置。所以数学中的向量也叫自由向量.,如图:他们都表示同一个向量。,不是,温度只有大小,没有方向。,不是,方向不同,说明1:,有向线段与向量的区别:,有向线段:有固定起点、大小、方向,向量:可选任意点作为向量的起点、有大小、有方向。,说明2:,3.什么是零向量和单位向量?,零向量:长度为0的向量,记为;单位向量:长度为1的向量.,注:零向量,单位向量都是只限制大小,不确定方向的.,4.什么是平行向量?,方向相同或相反的非零向量叫平行向量.,注:,1.若是两个平行向量,则记为,2.我们规定,零向量与任一向量
3、平行,即对任意向量,,都有,三、向量之间的关系:,练习.判断下列各组向量是否平行?,向量的平行与线段的平行有什么区别?,B,例1.试根据图中的比例尺以及三地的位置,在图中分别用 向量表示A地至B、C两地的位移,并求出A地至B、C两地的实际距离(精确到1km).,1:8000000,5.什么是相等向量和共线向量?,长度相等且方向相同的向量叫相等向量,注:1.若向量 相等,则记为;2.任意两个相等的非零向量,都可用同一条有向线段来 表示,并且与有向线段的起点无关。,平行向量也叫共线向量,注:任一组平行向量都可以平移到同一直线上.,O,A,B,C,B,相等,B,5.如图,设O是正六边形ABCDEF的
4、中心,分别写出图中与 相等的向量。,O,A,B,C,D,E,F,6.如图,设O是正六边形ABCDEF的中心,分别写出图中与 相等的向量。,O,7:如图,EF是ABC的中位线,AD是BC 边是的中 线,在以A、B、C、D、E、F为端点的有向线 段表示的向量中请分别写出(1)与向量CD共线的向量有_个,分别是_;(2)与向量DF的模一定相等的向量有_个,分别是_;(3)与向量DE相等的向量有_个,分别是_。,A,B,C,D,E,F,7,5,2,8:如图,D、E、F分别是ABC各边上的中点,四边形BCMF是平行四边形,请分别写出:(1)与ED共线的向量;(2)与ED相等的向量;(3)与FE相等的向量
5、。,课本 P8687,嘉祥一中高一、一科数学组,向量加法、减法运算及其几何意义,知识回顾,1.向量与数量有何区别?,2.怎样来表示向量向量?,3.什么叫相等向量向量?,数量只有大小没有方向,如:长度,质量,面积等,向量既有大小又有方向,如位移,速度,力等,1)用有向线段来表示,线段的长度表示线段的大小,箭头所指方向表示向量的方向。,2)用字母来表示,或用表示向量的有向线段的起点和终点字母表示.,长度相等,方向相同的向量相等.,(正因为如此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的大小和方向的前提下,移到任何位置.),上海,香港,台北,引入1:,向量加法的三角形法则:,C
6、,A,B,首尾连首尾相接,尝试练习一:,A,B,C,D,E,(1)根据图示填空:,例1.如图,已知向量,求作向量。,则,三角形法则,作法1:在平面内任取一点O,,作,,例题讲解:,思考1:如图,当在数轴上两个向量共线时,加法的三角形法 则是否还适用?如何作出两个向量的和?,(1),(2),B,C,B,C,当向量 不共线时,和向量的长度 与向量 的长度和 之间的大小关系如何?,三角形的两边之和大于第三边,综合以上探究我们可得结论:,图1表示橡皮条在两个力F1和F2的作用下,沿MC方向伸长了EO;图2表示橡皮条在一个力F的作用下,沿相同方向伸长了相同长度EO。从力学的观点分析,力F与F1、F2之间
7、的关系如何?,F=F1+F2,引入2:,起点相同,向量加法的平行四边形法则:,起点相同,向量加法的平行四边形法则:,文字表述为:以同一起点的两个向量为邻边作平行四边形,则以公共起点为起点的对角线所对应向量就是和向量。,例1.如图,已知向量,求作向量。,例题讲解:,作法2:在平面内任取一点O,,作,,以 为邻边作 OACB,,连结OC,则,平行四边形法则,尝试练习二:,(3)已知向量,用向量加法的三角形法则和平行四边形法则作出,例2.长江两岸之间没有大桥的地方,常常通过轮船进行运输,如图所示,一艘船从长江南岸A点出发,以 km/h的速度向垂直于对岸的方向行驶,同时江水的速度为向东2km/h.(1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 意义
链接地址:https://www.31ppt.com/p-5406034.html