《解直角三角形应用举例.ppt》由会员分享,可在线阅读,更多相关《解直角三角形应用举例.ppt(38页珍藏版)》请在三一办公上搜索。
1、新人教版九年级数学(下册)第二十八章,28.2 解直角三角形(2),用数学视觉观察世界用数学思维思考世界,在直角三角形中,除直角外,由已知两元素 求其余未知元素的过程叫解直角三角形.,1.解直角三角形,(1)三边之间的关系:,a2b2c2(勾股定理);,2.解直角三角形的依据,(2)两锐角之间的关系:,A B 90;,(3)边角之间的关系:,sinA,知识回顾,(必有一边),如图,RtABC中,C=90,,(1)若A=30,BC=3,则AC=,(2)若B=60,AC=3,则BC=,(3)若A=,AC=3,则BC=,(4)若A=,BC=m,则AC=,1.如图,沿AC方向开山修路为了加快施工进度,
2、要在小山的另一边同时施工,从AC上的一点B取ABD=140,BD=520m,D=50,那么开挖点E离D多远正好能使A,C,E成一直线(精确到0.1m),BED=ABDD=90,答:开挖点E离点D 332.8m正好能使A,C,E成一直线.,解:要使A、C、E在同一直线上,则 ABD是 BDE 的一个外角,例4:2008年10月15日“神舟”7号载人航天飞船发射成功当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6 400km,结果精确到0.1km),分析
3、:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点,如图,O表示地球,点F是飞船的位置,FQ是O的切线,切点Q是从飞船观测地球时的最远点 的长就是地面上P、Q两点间的距离,为计算 的长需先求出POQ(即a),例题,解:在图中,FQ是O的切线,FOQ是直角三角形,PQ的长为,当飞船在P点正上方时,从飞船观测地球时的最远点距离P点约2009.6km,仰角和俯角,铅直线,水平线,视线,视线,仰角,俯角,在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.,介绍:,1、如图,为了测量电线杆的高度AB,在离电线杆22.7米的C处,用高1.20米的测
4、角仪CD测得电线杆顶端B的仰角a30,求电线杆AB的高(精确到0.1米),例2:热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30,看这栋高楼底部的俯角为60,热气球与高楼的水平距离为120m,这栋高楼有多高?,=30,=60,120,A,B,C,D,巩固练习,建筑物BC上有一旗杆AB,由距BC 40m的D处观察旗杆顶部A的仰角为60,观察底部B的仰角为45,求旗杆的高度。,2、在山脚C处测得山顶A的仰角为45。问题如下:(1)沿着水平地面向前300米到达D点,在D点测得山顶A的仰角为600,求山高AB。,D,2、在山脚C处测得山顶A的仰角为450。问题如下:变式:沿着坡角为30 的斜坡前
5、进300米到达D点,在D点测得山顶A的仰角为600,求山高AB。,D,E,F,x,x,3、在山顶上处D有一铁塔,在塔顶B处测得地面上一点A的俯角=60o,在塔底D测得点A的俯角=45o,已知塔高BD=30米,求山高CD。,1.如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地平面控制点B的俯角=30。,求飞机A到控制点B的距离.,2.两座建筑AB及CD,其地面距离AC为50.4米,从AB的顶点B测得CD的顶部D的仰角300,测得其底部C的俯角a600,求两座建筑物AB及CD的高.,课本P92 例4,3.如图3,从地面上的C,D两点测得树顶A仰角分别是45和30,已知
6、CD=200m,点C在BD上,则树高AB等于(根号保留),4.如图4,将宽为1cm的纸条沿BC折叠,使CAB=45,则折叠后重叠部分的面积为(根号保留),6.如图2,在离铁塔BE 120m的A处,用测角仪测量塔顶的仰角为30,已知测角仪高AD=1.5m,则塔高BE=_(根号保留),5.如图1,已知楼房AB高为50m,铁塔塔基距楼房地基间的水平距离BD为100m,塔高CD为 m,则下面结论中正确的是()A由楼顶望塔顶仰角为60B由楼顶望塔基俯角为60C由楼顶望塔顶仰角为30 D由楼顶望塔基俯角为30,C,利用解直角三角形的知识解决实际问题的一般过程是:,1.将实际问题抽象为数学问题;,(画出平面
7、图形,转化为解直角三角形的问题),2.根据条件的特点,适当选用锐角三角函数等去解直角三角形;,3.得到数学问题的答案;,4.得到实际问题的答案.,新人教版九年级数学(下册)第二十八章,28.2 解直角三角形(3),用数学视觉观察世界用数学思维思考世界,视线,视线,仰角,俯角,在进行观察或测量时,,从上往下看,视线与水平线的夹角叫做俯角.,从下向上看,视线与水平线的夹角叫做仰角;,指南或指北的方向线与目标方向线构成小于900的角,叫做方位角.如图:点A在O的北偏东30点B在点O的南偏西45(西南方向),方位角,介绍:,利用解直角三角形的知识解决实际问题的一般过程是:,1.将实际问题抽象为数学问题
8、;,(画出平面图形,转化为解直角三角形的问题),2.根据条件的特点,适当选用锐角三角函数等去解直角三角形;,3.得到数学问题的答案;,4.得到实际问题的答案.,例1.如图,一艘海轮位于灯塔P的北偏东60方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(精确到0.01海里),60,30,P,B,C,A,例4.海中有一个小岛A,它的周围8海里范围内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60方向上,航行12海里到达D点,这时测得小岛A在北偏东30方向上,如果渔船不改变航线继续向东航行,有没有触
9、礁的危险?,B,A,D,F,60,12,30,B,A,D,F,解:由点A作BD的垂线,交BD的延长线于点F,垂足为F,AFD=90,由题意图示可知DAF=30,设DF=x,AD=2x,则在RtADF中,根据勾股定理,在RtABF中,,解得x=6,10.4 8没有触礁危险,30,60,1.如图所示,轮船以32海里每小时的速度向正北方向航行,在A处看灯塔Q在轮船的北偏东30 处,半小时航行到B处,发现此时灯塔Q与轮船的距离最短,求灯塔Q到B处的距离(画出图像后再计算),相信你能行,A,2如图所示,一渔船上的渔民在A处看见灯塔M在北偏东60方向,这艘渔船以28海里/时的速度向正东航行,半小时至B处,
10、在B处看见灯塔M在北偏东15方向,此时灯塔M与渔船的距离是(),海里.海里C.7海里 D.14海里,气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东45方向的B点生成,测得 台风中心从点B以40km/h的速度向正北方向移动,经5h后到达海面上的点C处因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西60方向继续移动以O为原点建立如图12所示的直角坐标系,(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为;(结果保留根号)(2)已知距台风中心20km的范围内均会受到台风的侵袭如果某城市(设为A点)位于点O的正北方向且处于台风中心的移动路线上,那么台风从生成到最
11、初侵袭该城要经过多长时间?,解:(1),(2)过点C作 于点D,如图2,则,在 中,台风从生成到最初侵袭该城要经过11小时,新人教版九年级数学(下册)第二十八章,28.2 解直角三角形(4),用数学视觉观察世界用数学思维思考世界,修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.坡面的铅垂高度(h)和水平长度(l)的比叫做坡面坡度(或坡比).记作i,即 i=.坡度通常写成1m的形式,如 i=16.坡面与 水平面的夹角叫做坡角,记作a,有i=tan a.显然,坡度越大,坡角a就越大,坡面就越陡.,例5.如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水平宽度C
12、E的比),根据图中数据求:(1)坡角a和;(2)坝顶宽AD和斜坡AB的长(精确到0.1m),解:(1)在RtAFB中,AFB=90,在RtCDE中,CED=90,如图一段路基的横断面是梯形,高为4米,上底的宽是12米,路基的坡面与地面的倾角分别是45和30求路基下底的宽,1.认清图形中的有关线段;2.分析辅助线的作法;3.坡角在解题中的作用;4.探索解题过程.,练习,作DEAB,CFAB,垂足分别为E、F由题意可知 DECF4.2(米),CDEF12.51(米).在RtADE中,因为 所以,在RtBCF中,同理可得 因此 ABAEEFBF 6.7212.517.90 27.13(米)答:路基下
13、底的宽约为27.13米,4 如图,水库大坝的截面是梯形ABCD,坝顶AD=6m,坡长CD=8m.坡底BC=30m,ADC=1350.(1)求坡角ABC的大小;(2)如果坝长100m,那么修建这个大坝共需多少土石方(结果精确到0.01m3).,咋办,先构造直角三角形!,如图,沿水库拦水坝的背水坡将坝面加宽两米,坡度由原来的1:2改成1:2.5,已知原背水坡长BD=13.4米,求:(1)原背水坡的坡角 和加宽后的背水坡的坡角;(2)加宽后水坝的横截面面积增加了多少?(精确到0.01),1.在解直角三角形及应用时经常接触到的一些概念(方位角;坡度、坡角等)2.实际问题向数学模型的转化(解直角三角形),知识小结,利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据条件的特点,适当选用锐角三角形函数等去解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案,
链接地址:https://www.31ppt.com/p-5384113.html