图与网络分析GraphTheoryandNetworkAnalysis.ppt
《图与网络分析GraphTheoryandNetworkAnalysis.ppt》由会员分享,可在线阅读,更多相关《图与网络分析GraphTheoryandNetworkAnalysis.ppt(75页珍藏版)》请在三一办公上搜索。
1、图与网络分析(Graph Theory and Network Analysis),图与网络的基本知识,最短路问题,树及最小树问题,最大流问题,最小费用最大流问题,哥尼斯堡七空桥,一笔画问题,一、图与网络的基本知识(一)、图与网络的基本概念,1、一个图是由点和连线组成。(连线可带箭头,也可不带,前者叫弧,后者叫边),一个图是由点集 和 中元素的无序对的一个集合 构成的二元组,记为G=(V,E),其中 V 中的元素 叫做顶点,V 表示图 G 的点集合;E 中的元素 叫做边,E 表示图 G 的边集合。,例,图1,2、如果一个图是由点和边所构成的,则称其为无向图,记作G=(V,E),连接点的边记作v
2、i,vj,或者vj,vi。,3、如果一个图是由点和弧所构成的,那么称它为有向图,记作D=(V,A),其中V 表示有向图D 的点集合,A 表示有向图D 的弧集合。一条方向从vi指向vj 的弧,记作(vi,vj)。,图2,4、一条边的两个端点是相同的,那么称为这条边是环。5、如果两个端点之间有两条以上的边,那么称为它们为多重边。,6、一个无环,无多重边的图称为简单图,一个无环,有多重边的图称为多重图。,7、每一对顶点间都有边相连的无向简单图称为完全图。有向完全图则是指任意两个顶点之间有且仅有一条有向边的简单图。,度为零的点称为弧立点,度为1的点称为悬挂点。悬挂点的关联边称为悬挂边。度为奇数的点称为
3、奇点,度为偶数的点称为偶点。,8、以点v为端点的边的个数称为点v 的度(次),记作。,图中 d(v1)=4,d(v6)=4(环计两度),9、设 G1=(V1,E1),G2=(V2,E2)如果 V2 V1,E2 E1 称 G2 是G1 的子图;如果 V2=V1,E2 E1 称 G2 是 G1 的部分图或支撑子图。,在实际应用中,给定一个图G=(V,E)或有向图D=(V,A),在V中指定两个点,一个称为始点(或发点),记作v1,一个称为终点(或收点),记作vn,其余的点称为中间点。对每一条弧,对应一个数,称为弧上的“权”。通常把这种赋权的图称为网络。,10、由两两相邻的点及其相关联的边构成的点边序
4、列称为链。如:v0,e1,v1,e2,v2,e3,v3,vn-1,en,vn,记作(v0,v1,v2,v3,vn-1,vn),,11、图中任意两点之间均至少有一条通路,则称此图为连通图,否则称为不连通图。,其链长为 n,其中 v0,vn 分别称为链的起点和终点。若链中所含的边均不相同,则称此链为简单链;所含的点均不相同的链称为初等链,也称通路。,(二)、图的矩阵表示对于网络(赋权图)G=(V,E),其中边有权,构造矩阵,其中:称矩阵A为网络G的权矩阵。,设图G=(V,E)中顶点的个数为n,构造一个矩阵,其中:称矩阵A为网络G的邻接矩阵。,例,权矩阵为:,邻接矩阵为:,二、树及最小树问题 已知有
5、六个城市,它们之间 要架设电话线,要求任意两个城市均可以互相通话,并且电话线的总长度最短。,1、一个连通的无圈的无向图叫做树。树中次为1的点称为树叶,次大于1的点称为分支点。,树 的性质:(1)树必连通,但无回路(圈)。(2)n 个顶点的树必有n-1 条边。(3)树 中任意两个顶点之间,恰有且仅有一条链(初等链)。(4)树 连通,但去掉任一条边,必变为不连通。(5)树 无回路(圈),但不相邻的两个点之间加一条边,恰得到一个回路(圈)。,2、设图 是图G=(V,E)的一支撑子图,如果图 是一个树,那么称K 是G 的一个生成树(支撑树),或简称为图G 的树。图G中属于生成树的边称为树枝,不在生成树
6、中的边称为弦。,一个图G 有生成树的充要条件是G 是连通图。,用破圈法求出下图的一个生成树。,(一)破圈法,(二)避圈法,在图中任取一条边e1,找一条与e1不构成圈的边e2,再找一条与e1,e2不构成圈的边e3。一般设已有e1,e2,ek,找一条与e1,e2,ek中任何一些边不构成圈的边ek+1,重复这个过程,直到不能进行为止。,某六个城市之间的道路网如图 所示,要求沿着已知长度的道路联结六个城市的电话线网,使电话线的总长度最短。,v1,v2,v3,v4,v5,1,4,2,3,1,3,5,2,最短路的一般提法为:设 为连通图,图中各边 有权(表示 之间没有边),为图中任意两点,求一条路,使它为
7、从 到 的所有路中总权最短。即:最小。,(一)、狄克斯屈拉(Dijkstra)算法适用于wij0,给出了从vs到任意一个点vj的最短路。,三、最短路问题,算法步骤:1.给始点vs以P标号,这表示从vs到 vs的最短距离为0,其余节点均给T标号,。2.设节点 vi 为刚得到P标号的点,考虑点vj,其中,且vj为T标号。对vj的T标号进行如下修改:3.比较所有具有T标号的节点,把最小者改为P标号,即:当存在两个以上最小者时,可同时改为P标号。若全部节点均为P标号,则停止,否则用vk代替vi,返回步骤(2)。,例一、用Dijkstra算法求下图从v1到v6的最短路。,解(1)首先给v1以P标号,给其
8、余所有点T标号。,(2),(3),(4),(5),(6),(7),(8),(9),(10),反向追踪得v1到v6的最短路为:,2,3,7,1,8,4,5,6,6,1,3,4,10,5,2,7,5,9,3,4,6,8,2,求从1到8的最短路径,2,3,7,1,8,4,5,6,6,1,3,4,10,5,2,7,5,9,3,4,6,8,2,X=1,w1=0,min c12,c14,c16=min 0+2,0+1,0+3=min 2,1,3=1X=1,4,p4=1,p4=1,p1=0,2,3,7,1,8,4,5,6,6,1,3,4,10,5,2,7,5,9,3,4,6,8,2,X=1,4,min c1
9、2,c16,c42,c47=min 0+2,0+3,1+10,1+2=min 2,3,11,3=2X=1,2,4,p2=2,p1=0,p4=1,p2=2,2,3,7,1,8,4,5,6,6,1,3,4,10,5,2,7,5,9,3,4,6,8,2,X=1,2,4,min c13,c23,c25,c47=min 0+3,2+6,2+5,1+2=min 3,8,7,3=3X=1,2,4,6,p6=3,p2=2,p4=1,p1=0,p6=3,2,3,7,1,8,4,5,6,6,1,3,4,10,5,2,7,5,9,3,4,6,8,2,X=1,2,4,6,min c23,c25,c47,c67=min
10、 2+6,2+5,1+2,3+4=min 8,7,3,7=3X=1,2,4,6,7,p7=3,p2=2,p4=1,p1=0,p6=3,p7=3,2,3,7,1,8,4,5,6,6,1,3,4,10,5,2,7,5,9,3,4,6,8,2,X=1,2,4,6,7,min c23,c25,c75,c78=min 2+6,2+5,3+3,3+8=min 8,7,6,11=6X=1,2,4,5,6,7,p5=6,p2=2,p4=1,p1=0,p6=3,p7=3,p5=6,2,3,7,1,8,4,5,6,6,1,3,4,10,5,2,7,5,9,3,4,6,8,2,X=1,2,4,6,7,min c23
11、,c53,c58,c78=min 2+6,6+9,6+4,3+8=min 8,15,10,11=8X=1,2,3,4,5,6,7,p3=8,p2=2,p4=1,p1=0,p6=3,p7=3,p5=6,p3=8,2,3,7,1,8,4,5,6,6,1,3,4,10,5,2,7,5,9,3,4,6,8,2,X=1,2,3,4,6,7,min c38,c58,c78=min 8+6,6+4,3+7=min 14,10,11=10X=1,2,3,4,5,6,7,8,p8=10,p2=2,p4=1,p1=0,p6=3,p7=3,p5=6,p3=8,p8=10,2,3,7,1,8,4,5,6,6,1,3,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 网络分析 GraphTheoryandNetworkAnalysis
链接地址:https://www.31ppt.com/p-5383120.html