纳米科学与技术-纳米材料的制备方法.ppt
《纳米科学与技术-纳米材料的制备方法.ppt》由会员分享,可在线阅读,更多相关《纳米科学与技术-纳米材料的制备方法.ppt(101页珍藏版)》请在三一办公上搜索。
1、第六章 纳米材料的 制备方法,6.1 纳米材料制备方法分类1.根据是否发生化学反应,纳米微粒的制备方法通常分为两大类:物理法和化学法。2.根据制备状态的不同,制备纳米微粒的方法可以分为气相法、液相法和固相法等;3.按反应物状态分为干法和湿法。大部分方法具有粒径均匀,粒度可控,操作简单等优点;有的也存在可生产材料范围较窄,反应条件较苛刻,如高温高压、真空等缺点。,纳米粒子制备方法,物理法,化学法,粉碎法构筑法,沉淀法水热法溶胶凝胶法冷冻干燥法喷雾法,干式粉碎湿式粉碎,气体冷凝法溅射法氢电弧等离子体法,共沉淀法均相沉淀法水解沉淀法,纳米粒子合成方法分类,气相反应法液相反应法,气相分解法气相合成法气
2、固反应法,其它方法(如球磨法),纳米粒子制备方法,气相法,液相法,沉淀法水热法溶胶凝胶法冷冻干燥法喷雾法,气体冷凝法氢电弧等离子体法溅射法真空沉积法加热蒸发法混合等离子体法,共沉淀法化合物沉淀法水解沉淀法,纳米粒子合成方法分类,固相法,粉碎法,干式粉碎湿式粉碎,化学气相反应法,气相分解法气相合成法气固反应法,物理气相法,热分解法,其它方法,固相反应法,6.2 纳米材料制备-物理法,6.2.1 低压气体中蒸发法 气体冷凝法,1.定义:1963年,Ryozi Uyeda及其合作者研制出,通过材料在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米微粒。气体冷凝法是在低压的氦、氩等惰性气体中加热金属、
3、合金或陶瓷使其蒸发气化,然后与惰性气体碰撞冷凝形成超微粒(11000 nm)或纳米微粒(1100 nm)的方法。,2.气体冷凝法的原理整个过程是在超高真空室内进行。通过分子涡轮使其达到0.1Pa以上的真空度,然后充入低压(约2KPa)的纯净惰性气体(He或Ar,纯度为99.9996)。欲蒸的物质(例如,金属,CaF2,NaCl,FeF等离子化合物、过渡族金属氮化物及易升华的氧化物等)置于坩埚内,通过钨电阻加热器或石墨加热器等加热装置逐渐加热蒸发,产生原物质烟雾,由于惰性气体的对流,烟雾向上移动,并接近充液氮的冷却棒(冷阱,77K)。,在蒸发过程中,原物质发出的原子与惰性气体原子碰撞而迅速损失能
4、量而冷却,在原物质蒸气中造成很高的局域过饱和,导致均匀的成核过程;在接近冷却棒的过程中,原物质蒸气首先形成原子簇,然后形成单个纳米微粒。在接近冷却棒表面的区域内,单个纳米微粒聚合长大,最后在冷却棒表面上积累起来。用聚四氟乙烯刮刀刻下并收集起来获得纳米粉。,(1)惰性气体压力。惰性气体压力的增加,粒子变大。(如图)(2)惰性气体的原子量。大原子质量的惰性气体将导致大粒子。(碰撞机会增多,冷却速度加快)。,3.气体冷凝法影响纳米微粒粒径大小的因素,(3)蒸发物质的分压,即蒸发温度或速率。实验表明,随着蒸发速率的增加(等效于蒸发源温度的升高),或随着原物质蒸气压力的增加,粒子变大。在一级近似下,粒子
5、大小正比于lnPv(Pv为金属蒸气的压力)。(原物质气体浓度增大,碰撞机会增多,粒径增大)。,4.气体冷凝法优缺点:设备相对简单,易于操作。纳米颗粒表面清洁,粒度齐整,粒度分布窄,粒度容易控制。缺点:难以获得高熔点的纳米微粒。主要用于Ag、Al、Cu、Au等低熔点金属纳米粒子的合成。,气体冷凝法合成Cu纳米粒子金属铜粒子呈球形,粒径在20100 nm,粒子之间存在粘结。,6.1.2 氢电弧等离子体法,1.等离子体的概念及其形成物质各态变化:固体液体气体等离子体反物质(负)+物质(正),(正负电相反,质量相同)。只要使气体中每个粒子的能量超过原子的电离能,电子将会脱离原子的束缚而成为自由电子,而
6、原子因失去电子成为带正电的离子(热电子轰击)。这个过程称为电离。当足够的原子电离后转变另一物态-等离子态。,等离子体是由大量自由电子和离子及少量未电离的气体分子和原子组成,且在整体上表现为近似于电中性的电离气体。即:等离子体=自由电子+带正电的离子+未电离原子或分子,为物质的第四态。电弧等离子体放电:电流场作用下,电流密度很大,气体近完全电离,成为电弧等离子体,温度很高,使材料气化。,当高温等离子体以约100500 m/s的高速到达金属或化合物原料表面时,可使其熔融并大量迅速地溶解于金属熔体中,在金属熔体内形成溶解的超饱和区、过饱和区和饱和区。这些原子、离子或分子与金属熔体对流与扩散使金属蒸发
7、。同时,原子或离子又重新结合成分子从金属熔体表面溢出。蒸发出的金属原子蒸气遇到周围的气体就会被急速冷却或发生反应形成纳米粒子。,采用等离子体加热蒸发法可以制备出金属、合金或金属化合物纳米粒子优点:1.等离子体温度高,几乎可以制取任何金属的微粒。2.金属或合金可以直接蒸发、急冷而形成原物质的纳米粒子,为纯粹的物理过程;而金属化合物,如氧化物、碳化物、氮化物的制备,一般需经过金属蒸发化学反应急冷,最后形成金属化合物纳米粒子。缺点:等离子体喷射的射流容易将金属熔融物质本身吹飞,这是工业中应解决的技术难点。,2.等离子体合成纳米微粒方法的分类:按等离子体产生方式可将纳米粒子制备方法分为4种:直流电弧等
8、离子体法;直流等离子体射流法;射频等离子体法;混合等离子体法。,6.1.3 溅射法,溅射法制备纳米微粒的原理:用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40250 Pa),两电极间施加的电压范围为0.31.5 kV。由于两电极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面(加热靶材),使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来。,粒子的大小及尺寸分布主要取决于:两电极间的电压、电流和气体压力;相似于气体冷凝法。靶材的表面积愈大,原子的蒸发速度愈高,超微粒的获得量愈多。,阴极,阳极,用溅射法制备纳米微粒有以下优点:(i)不需要
9、坩锅;蒸发材料(靶)放在什么地方都可以(向上,向下都行);(ii)靶材料蒸发面积大,粒子收率高。(iii)可制备多种纳米金属,包括高熔点和低熔点金属。常规的热蒸发法只能适用于低熔点金属;(iv)能制备多组元的化合物纳米微粒,如Al52Ti48,Cu91Mn9及ZrO2等;(v)利用反应性气体的反应性溅射,还可以制备出各类复合材料和化合物的纳米粒子。,溅射与蒸发方法的沉积薄膜原理及特性比较,*,6.1.4 流动液面上真空蒸度法,流动液面上真空蒸度法的基本原理:在高真空中用电子束加热蒸发的金属原子在流动的油面内形成超微粒子,产品为含有大量超微粒的糊状油。,制备装置的剖面图,高真空中的蒸发是采用电子
10、束加热,当水冷却坩埚中的蒸发原料被加热蒸发时,打开快门、使物质蒸发在旋转的圆盘下表面上,从圆盘中心流出的油通过圆盘旋转时的离心力在下表面上形成流动的油膜,蒸发的原子在油膜中形成了超微粒子。含有超微粒子的油被甩进了真空室沿壁的容器中,然后将这种超微粒含量很低的油在真空下进行蒸馏,使它成为浓缩的含有超微粒子的糊状物。,此方法的优点有以下几点:(i)制备Ag,Au,Pd,Cu,Fe,Ni,Co,A1,In等超微粒子,平均粒径约3 nm;用隋性气体蒸发法是难获得这样小的微粒;(ii)粒径均匀,分布窄;如图(iii)超微粒可均匀分布在油中;(iv)粒径的尺寸可控,即通过改变蒸发条件来控制粒径的大小。例如
11、蒸发速度,油的粘度,圆盘转速等,圆盘转速低,蒸发速度快,油的粘度高均使粒子的粒径增大,最大可达8 nm。,6.1.5 通电加热蒸发法,1 合成机制:通过碳棒与金属相接触,通电加热使金属熔化,金属与高温碳素反应并蒸发形成碳化物超微粒子。棒状碳棒与Si板(蒸发材料)相接触,在蒸发室内充有Ar或He气,压力为l10 KPa,在碳棒与Si板间通交流电(几百安培),Si板被其下面的加热器加热,随Si板温度上升,电阻下降,电路接通,当碳棒温度达白热程度时,Si板与碳棒相接触的部位熔化。当碳棒温度高于2473 K时,在它的周围形成了SiC超微粒的“烟”,然后将它们收集起来。如下图,通电加热蒸发法制备超微粒的
12、装置图。,2 影响因素:1)SiC超微粒的获得量随电流的增大而增多。例如,在400 Pa的Ar气中,当电流为400 A,SiC超微粒的收率为约0.58 g/min。2)惰性气体种类不同超微粒的大小也不同。He气中形成的SiC为小球形,Ar气中为大颗粒。(与气体冷凝法类似)3)用此种方法还可以制备Cr,Ti,V,Zr等结晶性碳化物纳米微粒,而Mo,Nb,Ta和W等高熔点金属只能得到非晶态纳米微粒(熔点比碳棒高)。,*,5.1.6 爆炸丝法,这种方法适用于工业上连续生产纳米金属、合金和金属氧化物纳米粉体。基本原理是先将金属丝固定在一个充满惰性气体(5106 Pa)的反应室中,丝两端的卡头为两个电极
13、,它们与一个大电容相连接形成回路,加15 kV的高压,金属丝在500800 kA电流下进行加热,融断后在电流中断的瞬间,卡头上的高压在融断处放电,使熔融的金属在放电过程中进一步加热变成蒸气,在惰性气体碰撞下形成纳米金属或合金粒子沉降在容器的底部,金属丝可以通过一个供丝系统自动进入两卡头之间,从而使上述过程重复进行(见图)。,为了制备某些易氧化的金属的氧化物纳米粉体,可通过两种方法来实现:一是事先在惰性气体中充入一些氧气,二是将己获得的金属纳米粉进行水热氧化。用这两种方法制备的纳米氧化物有时会呈现不同的形状:例如由前者制备的氧化铝为球形,后者则为针状粒子。,*,加热源通常有以下几种:不同的加热方
14、法制备出的超微粒的量、品种、粒径大小及分布等存在一些差别。1)电阻加热;2)高频感应加热;3)激光加热;4)电子束加热;5)微波加热;6)电弧加热。,6.3 纳米材料制备-化学法,6.3.1 溶胶一凝胶法溶胶-凝胶法基本原理溶胶-凝胶方法是湿化学反应方法之一,不论所用的起始原料(称为前驱物)为无机盐或金属醇盐,其主要反应步骤是前驱物溶于溶剂(水或有机溶剂)中形成均匀的溶液,溶质与溶剂产生水解或醇解反应生成物聚集成 1 nm左右的粒子并组成溶胶,经蒸发干燥转变为凝胶。,6.3 纳米材料制备-化学法,6.3.1 溶胶一凝胶法,6.3.1 溶胶一凝胶法实例:溶胶-凝胶法制备超细铁氧材料。将化学计量比
15、的Fe3+、Co3+、Ba2+、Zn2+、Cu2+的硝酸盐溶液混合,搅拌形成均匀褐色透明溶液,再将柠檬酸溶液按摩尔比1:1-1:3缓慢地加入前面已制的溶液中,适当加热(70-90)并搅拌,使形成均匀溶液,将氨水缓慢地加入上述配制的溶液中,使完全混合,直至溶液呈中性,PH=7-8,将配制好的溶液置于100-150烘箱中烘干,溶液形成黑褐色的干凝胶,然后将干凝胶在一定温度下进行热处理。而得铁氧体细粉。,6.3.1 溶胶一凝胶法溶胶-凝胶法优点:1.反应温度低,反应过程易于控制 2.制品的均匀度、纯度高(均匀性可达分子或原子水平)3.化学计量准确,易于改性,掺杂的范围宽(包括掺杂的量和种类)4.从同
16、一种原料出发,改变工艺过程即可获得不同的产品如粉料、薄膜、纤维等5.工艺简单,不需要昂贵的设备。缺点:1.所用原料多为有机化合物,成本较高,有些对健康有害2.处理过程时间较长,制品易产生开裂3.凝胶中存在大量微孔,在干燥过程中又将会逸出许多气体及有机物,并产生收缩,6.3.2 化学气相沉积法 CVD,Gas,Liquid,Solid,Condensation,Vaporization,Deposition,Freezing,Melting,Sublimation,气相沉积法,利用气态物质,在一固体表面进行化学反应后,在其上生成固态淀积物的过程。物理气相沉积(PVD):蒸发法、溅射法。化学气相沉
17、积(CVD):热活化CVD法、等离子体CVD法、金属有机CVD法等。特点:可以制超纯物 可以超细,气相沉积是利用气态或蒸气态的物质在气相或气固界面上生成固态沉积物的技术。一、历史:古人类在取暖和烧烤时熏在岩洞壁或岩石上的黑色碳层。20世纪60年代,John M Blocher Jr等首先提出Vapor Deposition,根据过程的性质(是否发生化学反应)分为:PVD 和CVD。现代CVD技术发展的开始阶段在20世纪50年代主要着重于刀具涂层的应用。,前苏联Deryagin,Spitsyn和Fedoseev等在70年代引入原子氢开创了激活低压CVD金刚石薄膜生长技术,80年代在全世界形成了研
18、究热潮,也是CVD领域的一项重大突破。化学气相沉积是近来发展起来制备无机材料的的新技术,广泛用于提纯物质、研制新晶体,沉积各种单晶、多晶或玻璃态无机薄膜材料。最近几年CVD技术在纳米材料的制备中也大显身手,成为一种有力的制备工具。,二、化学气相沉积定义CVD:Chemical Vapour Deposition是指在远高于临界反应温度的条件下,通过化学反应,使反应产物蒸气形成很高的过饱和蒸气压,自动凝聚形成大量的晶核,这些晶核不断长大,聚集成颗粒,随着气流进入低温区,最终在收集室内得到纳米粉体。(气态反应物受热,经化学反应沉积出产物的过程)。,三、化学气相沉积的特点保形性:沉积反应如在气固界面
19、上发生,则沉积物将按照原有固态基底的形状包覆一层薄膜。如果采用某种基底材料,在沉积物达到一定厚度以后又容易与基底分离,这样就可以得到各种特定形状的游离沉积物器具。可以得到单一的无机合成物质。可以沉积生成晶体或细粉状物质,甚至是纳米尺度的微粒。,四、分类 根据反应类型不同分为热解化学气相沉积、化学合成气相沉积、化学输运反应。1、热解化学气相沉积热解化学气相沉积是指一般在简单的单温区炉中,于真空或惰性气氛下加热衬底至所需温度后,导入反应气体使之发生热分解,最后在衬底上沉积出纳米材料。,条件是分解原料通常容易挥发,蒸气压、反应活性高。(1)氢化物:氢化物M-H键的离解能、键能都比较小,热解温度低,唯
20、一的副产物是没有腐蚀性的氢气。(2)金属有机化合物:金属烷基化合物,其中M-C键能一般小于C-C键能可广泛用于沉积高附着性的粉末和金属膜。,740 850C Si(OC2H5)4SiO2+H2O+4C2H4,金属有机化合物,630 675C Ga(CH3)3+AsH3GaAs+3CH4,氢化物和金属有机化合物体系,600C Pt(CO)2Cl2Pt+2CO+Cl2,其它气态配合物,800 900C GaCl3NH3GaN+3HCl,2、化学合成气相沉积化学合成气相沉积法通常是利用两种以上物质之间的气相化学反应,在高温下合成出相应的化学产物,冷凝而制备各类物质的微粒。,3、化学输运反应把所需要的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 纳米 科学 技术 材料 制备 方法
链接地址:https://www.31ppt.com/p-5373650.html