系统结构模型化技术.ppt
《系统结构模型化技术.ppt》由会员分享,可在线阅读,更多相关《系统结构模型化技术.ppt(81页珍藏版)》请在三一办公上搜索。
1、第4章 系统结构模型化技术,4.1 引言4.2 解析结构模型法4.3 解析结构模型的应用,4.1 引言,4.1.1 结构模型,系统是由许多具有一定功能的要素(如设备、事件、子系统等)所组成的,而各个要素之间总是存在相互支持或相互制约的逻辑关系。在这些关系中,又可分为直接关系和间接关系等。因此,在开发或改造一个系统的时候,首先,要了解系统中各要素间存在怎样的关系,是直接的还是间接的关系等等,要了解系统中各要素之间的关系,也就是要了解和掌握系统的结构,或者说,要建立系统的结构模型。,节点:系统的要素。,有向边:要素之间的相互关系。可理解为“影响”、“取决于”、“先于”、“需要”、“导致”或其它含义
2、。,所谓结构模型,就是应用有向连接图来描述系统各要素间的关系,以表示一个作为要素集合体的系统的模型.,结构模型具有的基本性质:,1、结构模型是一种几何模型,结构模型是由节点和有向边构成的图或树图来描述一个系统的结构。节点往往用来表示系统的要素,而有向边则表示要素间所存在的关系。,2、结构模型是一种以定性分析为主的模型,通过结构模型,可以分析系统的要素选择得是否合理,还可以分析系统要素及其相互关系变化时对系统总体的影响等问题。,3、结构模型除了可用有向连接图描述外,还可以用矩阵形式来描述,4、结构模型作为对系统进行描述的一种形式,正好处在数学模型形式和以文章表现的逻辑分析形式之间,矩阵可以通过逻
3、辑演算用数学方法进行处理,因此,在研究各要素之间关系时,就能通过矩阵形式的演算,可使定性分析和定量分析相结合。,因此,可以处理无论是宏观的还是微观的、定性的还是定量的、抽象的还是具体的有关问题。,3.1.2 结构模型化技术,结构模型化技术是指建立结构模型的方法论。下面是国外有关专家、学者对结构模型法的描述。,1、J华费尔特(John Warfield,1974年):结构模型法是“在仔细定义的模式中,使用图形和文字来描述一个复杂事件(系统或研究领域)的结构的一种方法论。”,2、M麦克林(Mick Mclean)和P西菲德(PShephed,1976年):“结构是任何数学模型的固有性质。所有这样的
4、模型都是由相互间具有特定的相互作用部分组成的。一个结构模型着重于一个模型组成部分的选择和清楚地表示出各组成部分间相互作用。”,3、D希尔劳克(Dennis Cearlock,1977年):结构模型所强调的是“确定变量之间是否有联结以及其联结的相对重要性,而不是建立严格的数学关系以及精确地确定其系数。结构模型法关心的是趋势及平衡状态下的辨识,而不是量的精确性”。,结构模型适用范围,结构模型作为对系统描述的一种形式,正好处在自然科学领域所用的数学模型形式和社会科学领域所用的以文章表现的逻辑分析形式之间。因此,它适合用来处理处于社会科学为对象的复杂系统和比较简单的以自然科学为对象的系统中存在的问题。
5、是一种以定性分析为主的模型,可以分析系统中要素选择是否合理,还可以分析系统要素及其相互关系变化时对系统的总体影响等问题。,目前已开发的结构模型化技术,解释结构模型法ISM(interpretative structural modeling)属于概念模型,它可以把模糊不清的思想、看法转化为直观的具有良好结构关系的模型。,3.2 解释结构模型法,应用对象从能源问题等国际性问题到地区经济开发、企事业甚至个人范围的问题等。尤其适用于变量众多、关系复杂而结构不清晰的系统分析中,也可用于方案的排序等。,解释结构模型法,3.2.1 图的基本概念3.2.2 图的矩阵表示法3.2.3 ISM的工作程序3.2.
6、4 ISM的建模步骤,3.2.1 图的基本概念,2、回路,3、环,4、树,5、关联树,1、有向连接图,有向连接图是指由若干节点和有向边连接而成的图像。,表示方法:设 节点的集合为S;有向边的集合为E,则左边有向连接图可表示为:,其中:,1、有向连接图,2、回路,在有向连接图的两个节点之间的边多于一条时,则该两点的边就构成了回路。,如左图中,节点S2和节点S3之间的边就构成了一个回路,3、环,一个节点的有向边若直接与该节点相连接,则就构成了一个环。,如左图中,节点S2的有向边就构成了一个环,4、树,当图中只有一个源点(指只有有向边输出而无输入的节点)或只有一个汇点(指只有有向边输入而无输出)的图
7、,称作树。树的两个相邻点间只有一条通路相连,不存在回路或环。,5、关联树,指节点上带有加权值W,而在边上有关联值r的树称作关联树。,解释结构模型法,3.2.1 图的基本概念3.2.2 图的矩阵表示法3.2.3 ISM的工作程序3.2.4 ISM的建模步骤,3.2.2 图的矩阵表示法,邻接矩阵(adjacency matrix)可达矩阵(reachablility matrix),1、邻接矩阵,邻接矩阵是图的基本的矩阵表示,它用来描述图中节点两两之间的关系。邻接矩阵A的元素aij可定义为:,Si与Sj有关系表明从Si到Sj有长度为1的通路,Si 可直接到达Sj,邻接矩阵所具有的特征,矩阵A的元素
8、全为零的行所对应的节点称为汇点,即只有有向边进入该点,而没有有向边离开该节点。矩阵A的元素全为零的列所对应的节点称为源点,即只有有向边离开该点,而没有有向边进入该节点。对应每一节点的行中,其元素值为1的数量,就是离开该节点的有向边数。对应每一节点的列中,其元素值为1的数量,就是进入该节点的有向边数。,举例,下面有向连接图的邻接矩阵为:,1.草2.兔子3.老鼠4.吃草籽的鸟5.吃草的昆虫6.捕食性昆虫7.蜘蛛8.蟾蜍9.吃虫子的鸟10.蛇11.狐狸12.鹰,课堂练习,请按图示关系作出邻接矩阵,2、可达矩阵,可达矩阵是指用矩阵的形式来描述有向连接图各节点之间,经过一定长度的通路后可以到达的程度。,
9、可达矩阵R的一个重要特性:,推移律特性,推移律特性是指,当Si经过长度为1的通路直接到达Sk,而Sk经过长度为1的通路直接到达Sj,那么Si经过长度为2的通路必可到达Sj,继续引用邻接矩阵的有向连接图为例,布尔代数运算规则:0+0=0,0+1=1,1+0=1,1+1=1,01=0,00=0,10=0,11=1,矩阵A1描述了各节点间经过长度不大于1的通路后的可达程度。设矩阵A2=(A+I)2,即将A1平方,并用布尔代数运算规则进行运算后,可得矩阵A2,矩阵A2描述了各节点间经过长度不大于2的通路后的可达程度。,通过依次运算后可得,式中,n矩阵阶数,则,矩阵R成为可达矩阵,它表明各节点间经过长度
10、不大于(n-1)的通路后的可达程度。对于节点数为n的图,最长的通路其长度不超过(n-1)。,本例中,继续运算,得到矩阵A3,可知:,从矩阵A2中可以看出,节点S2和S3在矩阵中的相应行和列,其元素值完全相同,出现这种情况,即说明S2和S3是一回路集。因此,只要选择其中的一个节点即可代表回路集中的其他节点。可达矩阵可缩减为:,课堂练习,根据邻接矩阵A,求出可达矩阵,解释结构模型法,3.2.1 图的基本概念3.2.2 图的矩阵表示法3.2.3 ISM的工作程序3.2.4 ISM的建模步骤,3.2.3 ISM的工作程序,1、组织实施ISM的小组2、设定问题3、选择构成系统的要素4、根据要素明细表构思
11、模型,并建立邻接矩阵和可达矩阵5、对可达矩阵进行分解后建立结构模型6、根据结构模型建立解释结构模型,ISM工作原理图,解释结构模型法,3.2.1 图的基本概念3.2.2 图的矩阵表示法3.2.3 ISM的工作程序3.2.4 ISM的建模步骤,3.2.4 ISM的建模步骤,1、建立邻接矩阵2、建立可达矩阵3、可达矩阵的推断4、可达矩阵的分解5、求缩减可达矩阵6、求骨干阵7、做出阶梯有向图,1.建立邻接矩阵,一般先根据小组成员的实际经验,对系统结构有一个大体或模糊的认识,建立一个构思模型,接下来判断要素之间有无关系:,(1)SiSj,即Si与Sj和Sj与Si互有关系,即形成回路;(2)SiSj,即
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 系统 结构 模型 技术
链接地址:https://www.31ppt.com/p-5373394.html