空间几何体的表面积和体积ppt(共82张PPT).ppt
《空间几何体的表面积和体积ppt(共82张PPT).ppt》由会员分享,可在线阅读,更多相关《空间几何体的表面积和体积ppt(共82张PPT).ppt(82页珍藏版)》请在三一办公上搜索。
1、1.3 简单几何体的表面积和体积,1.3.1 柱体、锥体、台体的表面积与体积,1、表面积:几何体表面的面积,2、体积:几何体所占空间的大小。,表面积、全面积和侧面积,表面积:立体图形的所能触摸到的面积之和叫做它的表面积。(每个面的面积相加)全面积全面积是立体几何里的概念,相对于截面积(“截面积”即切面的面积)来说的,就是表面积总和侧面积指立体图形的各个侧面的面积之和(除去底面),棱柱、棱锥、棱台的侧面积,侧面积所指的对象分别如下:棱柱-直棱柱。棱锥-正棱锥。棱台-正棱台,2.几何体的表面积(1)棱柱、棱锥、棱台的表面积就是.(2)圆柱、圆锥、圆台的侧面展开图分别是、;它们的表面积等于.,各面面
2、积,之和,矩,形,扇形,扇环形,侧面积,与底面面积之和,回忆复习有关概念,1、直棱柱:,2、正棱柱:,3、正棱锥:,4、正棱台:,侧棱和底面垂直的棱柱叫直棱柱,底面是正多边形的直棱柱叫正棱柱,底面是正多边形,顶点在底面的射影是底面中心的棱锥,正棱锥被平行于底面的平面所截,截面和底面之间的部分叫正棱台,作直三棱柱、正三棱锥、正三棱台各一个,找出斜高,斜高的概念,2、分别作出一个圆柱、圆锥、圆台,并找出旋转轴,分别经过旋转轴作一个平面,观察得到的轴截面是 什么形状的图形.,矩 形,等腰三角形,等腰梯形,直棱柱:设棱柱的高为h,底面多边形的周长为c,则S直棱柱侧.(类比矩形的面积)圆柱:如果圆柱的底
3、面半径为r,母线长为l,那么S圆柱侧.(类比矩形的面积),ch,2rl,知识点一:柱、锥、台、球的表面积与侧面积,(1)柱体的侧面积,把直三棱柱侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?,棱柱的侧面展开图是什么?如何计算它的表面积?,h,正棱柱的侧面展开图,2.棱柱、棱锥、棱台的展开图及表面积求法,思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形?展开的图形与原图 有什么关系?,宽,长方形,圆柱的侧面展开图是矩形,3.圆柱、圆锥、圆台的展开图及表面积求法,圆柱,正棱锥:设正棱锥底面正多边形的周长为c,斜高为h,则S正棱锥侧.(类比三角形的面积)圆锥:如果圆锥的底面半
4、径为r,母线长为l,那么S圆锥侧.(类比三角形的面积),12ch,rl,(2)锥体的侧面积,把正三棱锥侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?,棱锥的侧面展开图是什么?如何计算它的表面积?,正三棱锥的侧面展开图,棱锥的展开图,正五棱锥的侧面展开图,棱锥的展开图,思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形?展开的图形与原图 有什么关系?,扇形,圆锥的侧面展开图是扇形,圆锥,正棱台:设正n棱台的上底面、下底面周长分别为c、c,斜高为h,则正n棱台的侧面积公式:S正棱台侧.圆台:如果圆台的上、下底面半径分别为r、r,母线长为l,则S圆台侧,12(cc)h,l(rr
5、),(3)台体的侧面积,注:表面积侧面积底面积,把正三棱台侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?(类比梯形的面积),正四棱台的侧面展开图,棱台的侧面展开图是什么?如何计算它的表面积?,棱台的展开图,参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么,圆台的侧面展开图是扇环,圆台,思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形?展开的图形与原图 有什么关系?,扇环,侧,圆台侧面积公式的推导,圆柱、圆锥、圆台三者的表面积公式之间有什么关系?,棱柱、棱锥、棱台都是由多个平面图形围成的几何体,,棱柱、棱锥、棱台的表面积,它们的侧面展开图还是平面图形,,计算它们的
6、表面积就是计算它的各个侧面面积和底面面积之和,例1:一个正三棱台的上、下底面边长分别是3cm和6cm,高是3/2cm,求三棱台的侧面积.,分析:关键是求出斜高,注意图中的直角梯形,O1,O,D,D1,E,例3:圆台的上、下底面半径分别为2和4,高为,求其侧面展开图扇环所对的圆心角,分析:抓住相似三角形中的相似比是解题的关键,小结:1、抓住侧面展开图的形状,用好相应的计算公式,注意逆向用公式;2、圆台问题恢复成圆锥图形在圆锥中解决圆台问题,注意相似比.,答:1800,例:圆台的上、下底半径分别是10cm和20cm,它的侧面展开图的扇环的圆心角是1800,那么圆台的侧面积是多少?(结果中保留),小
7、结:1、弄清楚柱、锥、台的侧面展开图的形状是关键;2、对应的面积公式,例1:一个正三棱柱的底面是边长为5的正三角形,侧棱长为4,则其侧面积为 _;,答:60,例2:正四棱锥底面边长为6,高是4,中截面把棱锥截成一个小棱锥和一个棱台,求棱台的侧面积,例3 已知棱长为a,各面均为等边三角形的四面体S-ABC,求它的表面积,B,C,A,S,分析:四面体的展开图是由四个全等的正三角形组成,因为BC=a,,所以:,因此,四面体S-ABC 的表面积,交BC于点D,解:先求 的面积,过点S作,,例4(2010年广东省惠州市高三调研)如图,已知正三棱柱ABCA1B1C1的底面边长是2,D,E是CC1,BC的中
8、点,AEDE.(1)求此正三棱柱的侧棱长;(2)正三棱柱ABCA1B1C1的表面积,【思路点拨】(1)证明AED为直角三角形,然后求侧棱长;(2)分别求出侧面积与底面积,【点评】求表面积应分别求各部分面的面积,所以应弄清图形的形状,利用相应的公式求面积,规则的图形可直接求,不规则的图形往往要再进行转化,常分割成几部分来求,思考:怎样求斜棱柱的侧面积?1)侧面展开图是 平行四边形 2)S斜棱柱侧=直截面周长侧棱长 3)S侧=所有侧面面积之和,1高考中对几何体的表面积的考查一般在客观题中,借以考查空间想象能力和运算能力,只要正确把握几何体的结构,准确应用面积公式,就可以顺利解决,几何体的表面积问题
9、小结,2多面体的表面积是各个面的面积之和圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和3几何体的表面积应注意重合部分的处理,几何体占有空间部分的大小叫做它的体积,一、体积的概念与公理:,公理1、长方体的体积等于它的长、宽、高的积。,V长方体=abc,推论1、长方体的体积等于它的底面积s和高h的积。,V长方体=sh,推论2、正方体的体积等于它的棱长a 的立方。,V正方体=a3,公理2、夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等。,幂势既同,则积不容异,祖
10、暅原理,定理1:柱体(棱柱、圆柱)的体积等于它的底面积 s 和高 h 的积。,V柱体=sh,二:柱体的体积,三:锥体体积,例2:,如图:三棱柱AD1C1-BDC,底面积为S,高为h.,答:可分成棱锥A-D1DC,棱锥A-D1C1C,棱锥A-BCD.,问:(1)从A点出发棱柱能分割成几个三棱锥?,3.1锥体(棱锥、圆锥)的体积(底面积S,高h),注意:三棱锥的顶点和底面可以根据需要变换,四面体的每一个面都可以作为底面,可以用来求点到面的距离,问题:锥体(棱锥、圆锥)的体积,定理如果一个锥体(棱锥、圆锥)的底面 积是,高是,那么它的体积是:,推论:如果圆锥的底面半径是,高是,那么它的体积是:,锥体
11、,圆锥,h,x,四.台体的体积,V台体=,上下底面积分别是s/,s,高是h,则,推论:如果圆台的上,下底面半径是r1.r2,高是,那么它的体积是:,圆台 h,五.柱体、锥体、台体的体积公式之间有什么关系?,S为底面面积,h为柱体高,S分别为上、下底面面积,h 为台体高,S为底面面积,h为锥体高,(1)长方体的体积V长方体abc.(其中a、b、c为长、宽、高,S为底面积,h为高)(2)柱体(圆柱和棱柱)的体积V柱体Sh.其中,V圆柱r2h(其中r为底面半径),Sh,知识点二柱、锥、台、球的体积,(3)锥体(圆锥和棱锥)的体积V锥体 Sh.其中V圆锥,r为底面半径,13r2h,(4)台体的体积公式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 几何体 表面积 体积 ppt 82
链接地址:https://www.31ppt.com/p-5372213.html