《直线与圆的位置关系(第二课时).ppt》由会员分享,可在线阅读,更多相关《直线与圆的位置关系(第二课时).ppt(20页珍藏版)》请在三一办公上搜索。
1、24.2.2 直线和圆的位置关系,第二课时,(2)直线l 和O相切,1.圆和直线的位置关系。,(1)直线l 和O相离,(3)直线l 和O相交,dr,d=r,dr,旧知回顾,2.什么叫做切线?3.你已经学会了哪些判断一条直线是圆的切线的方法?,旧知回顾,2.砂轮打磨工件飞出火星的方向是什么方向?,问题,1.当你在下雨天快速转动雨伞时水飞出的方向是什么方向?,观察、提出问题、分析发现,根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?,图(2)中直线l是O的切线,怎样判定?,请在O上任意取一点A,连接OA
2、。过点A作直线 lOA。思考一下问题:,1.圆心O到直线l的距离和圆的半径有什么数量关系?2.二者位置有什么关系?为什么?3.由此你发现了什么?,l,发现:(1)直线 l 经过半径OA的外端点A;(2)直线l垂直于半径0A 则:直线l与O相切,这样我们就得到了从位置上来判定直线是圆的切线的方法切线的判定定理,直线与圆相切的判定定理:,经过半径的外端并且垂直这条半径的直线是圆的切线。,对定理的理解:,切线需满足两条:经过半径外端;垂直于这条半径,O,r,l,A,如图所示 OA是半径,l OA于A l是O的切线。,定理的几何符号表达:,判 断,1.过半径的外端的直线是圆的切线()2.与半径垂直的的
3、直线是圆的切线()3.过半径的端点与半径垂直的直线是圆的切线(),问题:定理中的两个条件缺少一个行不行?,两个条件,缺一不可,.,O,A,L,思考,将上页思考中的问题反过来,如果L是O的切线,切点为A,那么半径OA与直线L是不是一定垂直呢?,一定垂直,切线的性质定理:,圆的切线垂直于过切点的半径,、切线和圆只有一个公共点。,、切线和圆心的距离等于半径。,、切线垂直于过切点的半径。,、经过圆心垂直于切线的直线必过切点。,、经过切点垂直于切线的直线必过圆心。,归纳:,.,O,A,L,切线的性质:,例1已知:直线AB经过O上的点C,并且OA=OB,CA=CB。求证:直线AB是O的切线。,O,B,A,
4、C,分析:由于AB过O上的点C,所以连接OC,只要证明ABOC即可。,证明:连结OC(如图)。OAB中,OAOB,CACB,ABOC。OC是O的半径 AB是O的切线。,已知一个圆和圆上的一点,如何过这个点画出圆的切线?,辅助线:有点连圆心,证垂直,辅助线:无交点,作垂直,证等于半径.,例2已知:O为BAC平分线上一点,ODAB于D,以O为圆心,OD为半径作O。求证:O与AC相切。,O,A,B,C,D,证明:过O作OEAC于E。AO平分BAC,ODAB OEOD 即圆心O到AC的距离 d=r AC是O切线。,例1与例2的证法有何不同?(1)如果已知直线经过圆上一点,则连结这点和圆心,得到辅助半径
5、,再证所作半径与这直线垂直。简记为:连半径,证垂直。(2)如果已知条件中不知直线与圆是否有公共点,则过圆心作直线的垂线段为辅助线,再证垂线段长等于半径长。简记为:作垂直,证半径。,归纳分析,例已知:ABC 为等腰三角形,O 是底边 BC 的中点,腰 AB 与O 相切于点 D.求证:AC 是O 的切线,E,分析:,连接OD,点D是半径外端,ODAB.,作OEAC于E,证OE=OD.,1.如图,AB是O的直径,ABT=45,AT=AB,求证:AT是O的切线.,练习:,证明:ABT=45,AT=AB,,T=45,BAT=90,AT O的切线。,2.如图,AB 是O的直径,直线l1,l2是O的切线,A,B是切点.l1,l2有怎样的位置关系?证明你的结论.,练习:,证明:,又 AB 是O的直径,l1,l2是O的切线,A,B是切点,l1 AB,l2AB,l1 l2,1、定义法:和圆有且只有一个公共点的直线是圆的切线。2、数量法(d=r):和圆心距离等于半径的直线是圆的切线。3、判定定理:经过半径外端且垂直于这条半径的直线是圆的切线。,证明直线与圆相切有如下三种途径:,即:(1)若直线与圆的一个公共点已指明,则连接这点和圆心,说明直线垂直于经过这点的半径;(2)若直线与圆的公共点未指明,则过圆心作直线的垂线段,然后说明这条线段的长等于圆的半径,再见,
链接地址:https://www.31ppt.com/p-5369743.html