直流电阻电路的分析计算.ppt
《直流电阻电路的分析计算.ppt》由会员分享,可在线阅读,更多相关《直流电阻电路的分析计算.ppt(175页珍藏版)》请在三一办公上搜索。
1、第2章直流电阻电路的分析计算,2.1 电阻的串联和并联 2.2 电阻的星形连接与三角形连接的等效变换2.3 两种实际电源模型的等效变换2.4 支路电流法2.5 网孔法2.6 节点电压法2.7 叠加定理2.8 戴维南定理*2.9 含受控源电路的分析本章小结习题,2.1 电阻的串联和并联,2.1.1 等效网络的定义二端网络:电路分析中,如果研究的是整个电路中的一部分,可以把这一部分作为一个整体看待。当这个整体只有两个端钮与其外部相连时,就叫做二端网络。二端网络的一般符号如图2.1所示。,图 2.1 二端网络,二端网络的端钮电流、端钮间的电压分别叫端口电流、端口电压。图2.1中标出了二端网络的端口电
2、流i和端口电压u,电流电压的参考方向是关联的,ui应看成它接受的功率。等效网络:一个二端网络的端口电压、电流关系和另一个二端网络的端口电压、电流关系相同,这两个网络叫做等效网络。等效网络的结构虽然不同,但对任何外电路,它们的作用完全相同。也就是说,等效网络互换,它们的外部特性不变。等效电阻:一个内部没有独立源的电阻性二端网络,总可以与一个电阻元件等效。这个电阻元件的电阻值等于该网络关联参考方向下端口电压与端口电流的比值,叫做该网络的等效电阻或输入电阻,用Ri表示。Ri也叫总电阻。,同样,还有三端,n端网络。两个n端网络,如果对应各端钮的电压、电流关系相同,则它们也是等效的。进行网络的等效变换,
3、是分析计算电路的一个重要手段。用结构较简单的网络等效代替结构较复杂的网络,将简化电路的分析计算。2.1.2 电阻的串联在电路中,把几个电阻元件依次一个一个首尾连接起来,中间没有分支,在电源的作用下流过各电阻的是同一电流。这种连接方式叫做电阻的串联。,图2.2(a)表示三个电阻串联后由一个直流电源供电的电路。以U代表总电压,I代表电流,R1+R2+R3代表各电阻,U1、U2、U3代表各电阻的电压,按KVL有U=U1+U2+U3=(R1+R2+R3)I上式表明,图2.2(b)所示的电阻值为R1+R2+R3的一个电阻元件的电路,与图2.2(a)所示二端网络有相同的端口电压、电流关系,即串联电阻的等效
4、电阻等于各电阻的和,即Ri=R1+R2+R3(2.1),电阻串联时,各电阻上的电压为即串联的每个电阻的电压与总电压的比等于该电阻与等效电阻的比。串联的每个电阻的功率也与它们的电阻值成正比。,(2.2),图 2.2 电阻的串联,例2.1 如图2.3所示,用一个满刻度偏转电流为50 A,电阻Rg为 2k的表头制成100 V量程的直流电压表,应串联多大的附加电阻Rf?,图 2.3 例2.1图,例2.1 如图2.3所示,用一个满刻度偏转电流为50 A,电阻Rg为 2k的表头制成100 V量程的直流电压表,应串联多大的附加电阻Rf?解 满刻度时表头电压为Ug=Rg I=250=0.1V附加电阻电压为Uf
5、=100-0.1=99.9V代入式(2.2),得解得Rf=1998k,2.1.3 电阻的并联在电路中,把几个电阻元件的首尾两端分别连接在两个节点上,在电源的作用下,它们两端的电压都相同,这种连接方式叫做电阻的并联。图2.4(a)表示三个电阻并联后由一个直流电源供电的电路。以I代表总电流,U代表电阻上的电压,G1、G2、G3代表各电阻的电导,I1、I2、I3代表各电阻中的电流。按KCL有I=I1+I2+I3=(G1+G2+G3)U可见,并联电阻的等效电导等于各电导的和(如图 2.4(b)所示),即 Gi=G1+G2+G3(2.3),图 2.4 电阻的并联,并联电阻的电压相等,各电阻的电流与总电流
6、的关系为即并联的每个电阻的电流与总电流的比等于其电导与等效电导的比。我们常会遇到两个电阻并联的情况。两个电阻R1、R2并联,由,(2.4),得等效电阻为如果总电流为I,两个电阻的电流各为,(2.5),并联的每个电阻的功率与它们的电导成正比。例2.2 如图2.5所示,用一个满刻度偏转电流为50A,电阻Rg为2 k的表头制成量程为50 mA的直流电流表,应并联多大的分流电阻R2?,图 2.5 例2.2图,解 由题意已知,I1=50 A,R1=Rg=2000,I=50 mA,代入式(2.5)得解得 R2=2.002,2.1.4 电阻的串、并联电阻的串联和并联相结合的连接方式,称为电阻的串、并联或混联
7、。只有一个电源作用的电阻串、并联电路,可用电阻串、并联化简的办法,化简成一个等效电阻和电源组成的单回路,这种电路又称简单电路。反之,不能用串、并联等效变换化简为单回路的电路则称为复杂电路。简单电路的计算步骤是:首先将电阻逐步化简成一个总的等效电阻,算出总电流(或总电压),然后用分压、分流的办法逐步计算出化简前原电路中各电阻的电流和电压,再计算出功率。下面通过例题说明计算的过程。,例2.3 进行电工实验时,常用滑线变阻器接成分压器电路来调节负载电阻上电压的高低。图2.6 中R1和R2是滑线变阻器,RL是负载电阻。已知滑线变阻器额定值是100、3A,端钮a、b上输入电压U1=220 V,RL=50
8、。试问:(1)当R2=50 时,输出电压U2是多少?(2)当R2=75 时,输出电压U2是多少?滑线变阻器能否安全工作?,图2.6 例2.3图,解(1)当R2=50时,R2和RL并联后与R1串联而成,故端钮a、b的等效电阻Rab为滑线变阻器R1段流过的电流为 负载电阻流过的电流可由电流分配公式(2.5)求得,即,(2)当R2=75时,计算方法同上,可得,因I1=4 A,大于滑线变阻器额定电流 3A,R1段电阻有被烧坏的危险。求解简单电路,关键是判断哪些电阻串联,哪些电阻并联。一般情况下,通过观察可以进行判断。当电阻串、并联的关系不易看出时,可以在不改变元件间连接关系的条件下将电路画成比较容易判
9、断串、并联的形式。这时无电阻的导线最好缩成一点,并且尽量避免相互交叉。重画时可以先标出各节点代号,再将各元件连在相应的节点间,下面用一个例子来说明。,例2.4 求图2.7(a)所示电路中a、b两点间的等效电阻Rab。解(1)先将无电阻导线d、d缩成一点,用d表示,则得图2.7(b)。(2)并联化简,将图2.7(b)变为图2.7(c)。(3)由图2.7(c)求得a、b两点间的等效电阻为,图 2.7 例 2.4 图,思考题1.什么叫二端网络的等效网络?试举例说明。2.在图 2.8 所示电路中,Us不变。当R3增大或减小时,电压表、电流表的读数将如何变化?说明其原因。,图2.8 思考题 2 图,2.
10、2 电阻的星形连接与三角形连接的等效变换,三个电阻元件首尾相连,连成一个三角形,就叫做三角形连接,简称形连接,如图2.9(a)所示。三个电阻元件的一端连接在一起,另一端分别连接到电路的三个节点,这种连接方式叫做星形连接,简称Y形连接,如图2.9(b)所示。,图 2.9 电阻的三角形和星形连接,在电路分析中,常利用Y形网络与形网络的等效变换来简化电路的计算。根据等效网络的定义,在图2.9所示的形网络与Y形网络中,若电压U12、U23、U31和电流I1、I2、I3都分别相等,则两个网络对外是等效的。据此,可导出Y形连接电阻R1、R2、R3与形连接电阻R12、R23、R31之间的等效关系。应用KVL
11、于图2.9(a)中的回路1231,有R12I12+R23I23+R31I31=0由KCL有I23=I2+I12I31=I12-I1,代入上式,得R12I12+R23(I2+I12)+R31(I12-I1)=0经过整理后,得同理可求得,(2.6a),(2.6c),(2.6b),对于图2.9(b)有U12=R1I1-R2I2 U23=R2I2-R3I3 U31=R3I3-R1I1(2.7)比较式(2.6)和式(2.7)可知:若满足等效条件,两组方程式I1、I2、I3前面的系数必须相等,即,(2.8),式(2.8)就是从已知的形连接电阻变换为等效Y形连接电阻的计算公式。解方程组(2.8),可得,式(
12、2.9)就是从已知的Y形连接电阻变换为等效形连接电阻的计算公式。若形(或Y形)连接的三个电阻相等,则变换后的Y形(或形)连接的三个电阻也相等。设形三个电阻R12=R23=R31=R,则等效Y形的三个电阻为RY=R1=R2=R3=R/3 反之R=R12=R23=R31=3RY(2.11)例 2.5 图2.10(a)所示电路中,已知Us=225V,R0=1,R1=40,R2=36,R3=50,R4=55,R5=10,试求各电阻的电流。,(2.10),图 2.10 例 2.5 图,解 将形连接的R1、R3、R5等效变换为Y形连接的Ra、Rc、Rd,如图2.10(b)所示,代入式(2.8)求得,图2.
13、10(b)是电阻混联网络,串联的Rc、R2的等效电阻Rc2=40,串联的Rd、R4的等效电阻Rd4=60,二者并联的等效电阻为Ra与Rob串联,a、b间桥式电阻的等效电阻为Ri=20+24=44 桥式电阻的端口电流为,R2、R4的电流分别为为了求得R1、R3、R5的电流,从图2.10(b)求得Uac=RaI+RcI2=205+43=112V 回到图2.10(a)所示电路,得,并由KCL得I3=I-I1=5-2.8=2.2AI5=I3-I4=2.2-2=0.2A,思 考 题求图 2.11 所示网络的等效电阻Rab。,图 2.11 思考题图,2.3 两种实际电源模型的等效变换,一个实际的直流电源在
14、给电阻负载供电时,其端电压随负载电流的增大而下降。在一定范围内端电压、电流的关系近似于直线,这是由于实际直流电源内阻引起的内阻压降造成的。图2.12(a)是直流电压源和电阻串联的组合,其端电压U和电流I的参考方向如图中所示。U和I都随外电路改变而变化,其外特性方程为U=Us-RI(2.12),图2.12(b)是按式(2.12)画出的伏安特性曲线,它是一条直线。只要适当选择R值,电压源Us和电阻R的串联组合就可作为实际直流电源的电路模型。,图2.12 电压源和电阻串联组合,图2.13(a)是电流源和电导的并联组合,其端电压和电流的参考方向如图中所示,其外特性为I=Is-GU(2.13)图2.13
15、(b)是按式(2.13)画出的伏安特性曲线,它也是一条直线。只要适当选择G值,电流源和电导并联的组合也可以作为实际直流电源的电路模型。,图2.13 电流源和电导并联组合,比较式(2.12)和式(2.13),只要满足则式(2.12)和式(2.13)所表示的方程完全相同,它们在I-U平面上将表示同一直线,所以图2.12(a)和图2.13(a)所示电路对外完全等效。在这里要注意,Us和Is参考方向的相互关系:Is的参考方向由Us的负极指向其正极。所以在满足式(2.14)的条件下,电压源、电阻的串联组合与电流源、电导的并联组合之间可互相等效变换,这使得某些电路问题的解决更加灵活方便。,(2.14),一
16、般情况下,这两种等效模型内部的功率情况并不相同,但是对外部来说,它们吸收或供出的功率总是一样的。顺便指出,没有串联电阻的电压源和没有并联电阻的电流源之间没有等效的关系。例 2.6 求图2.14(a)所示的电路中R支路的电流。已知Us1=10 V,Us2=6 V,R1=1,R2=3,R=6。,图 2.14 例 2.6 图,解 先把每个电压源电阻串联支路变换为电流源电阻并联支路。网络变换如图2.14(b)所示,其中图2.14(b)中两个并联电流源可以用一个电流源代替,其Is=Is1+Is2=10+2=12A,并联R1、R2的等效电阻为网络简化如图2.14(c)所示。对于图2.14(c)电路,可按分
17、流关系求得R的电流I为,思 考 题 用一个等效电源替代图2.15中各有源二端网络。,图 2.15 思考题图,2.4 支路电流法,以图 2.16 所示的电路为例来说明支路电流法的应用。在电路中支路数 b=3,节点数n=2,以支路电流I1、I2、I3为变量,共要列出三个独立方程。列方程前指定各支路电流的参考方向如图2.16所示。,图 2.16 支路电流法举例,首先,根据电流的参考方向,对节点a列写KCL方程:-I1-I2+I3=0(2.15)对节点b列写KCL方程:I1+I2-I3=0(2.16)式(2.15)即为式(2.16),两个方程中只有一个是独立的。这一结果可以推广到一般电路:节点数为n的
18、电路中,按KCL列出的节点电流方程只有n-1个是独立的。并将n-1个节点称为一组独立节点。这是因为每个支路连到两个节点,每个支路电流在n个节点电流方程中各出现两次;又因为同一支路电流对这个支路所连的一个节点取正号,对所连的另一个节点必定取负号,所以n个节点电流方程相加所得必定是个“0=0”的恒等式。至于哪个节点不独立,则是任选的。,其次,选择回路,应用KVL列出其余b-(n-1)个方程。每次列出的KVL方程与已经列写过的KVL方程必须是互相独立的。通常,可取网孔来列KVL方程。图2.16中有两个网孔,按顺时针方向绕行,对左面的网孔列写KVL方程:R1I1-R2I2=Us1-Us2(2.17)按
19、顺时针方向绕行,对右面的网孔列写KVL方程:R2I2+R3I3=Us2(2.18)网孔的数目恰好等于b-(n-1)=3-(2-1)=2。因为每个网孔都包含一条互不相同的支路,所以每个网孔都是一个独立回路,可以列出一个独立的KVL方程。,应用KCL和KVL一共可列出(n-1)+b-(n-1)=b个独立方程,它们都是以支路电流为变量的方程,因而可以解出b个支路电流。综上所述,支路电流法分析计算电路的一般步骤如下:(1)在电路图中选定各支路(b个)电流的参考方向,设出各支路电流。(2)对独立节点列出n-1个KCL方程。(3)通常取网孔列写KVL方程,设定各网孔绕行方向,列出b-(n-1)个KVL方程
20、。,(4)联立求解上述b个独立方程,便得出待求的各支路电流。用支路法时,可把电流源与电阻并联组合变换为电压源与电阻串联组合,以简化计算。,例 2.7 图2.16所示电路中,Us1=130V、R1=1为直流发电机的模型,电阻负载R3=24,Us2=117V、R2=0.6为蓄电池组的模型。试求各支路电流和各元件的功率。解 以支路电流为变量,应用KCL、KVL列出式(2.15)、式(2.17)和式(2.18),并将已知数据代入,即得-I1-I2+I3=0I1-0.6I2=130-1170.6I2+24I3=117解得I1=10A,I2=-5A,I3=5A。,I2为负值,表明它的实际方向与所选参考方向
21、相反,这个电池组在充电时是负载。Us1发出的功率为Us1I1=13010=1300WUs2发出的功率为Us2I2=117(-5)=-585W即Us2接受功率585W。各电阻接受的功率为P1=I21R1=1021=100WP2=I22R2=(-5)20.6=15WP3=I23R3=5224=600W1300=585+100+15+600,功率平衡,表明计算正确。,思考题试列出用支路电流法求图2.17所示电路支路电流的方程组。,图 2.17 思考题图,2.5 网孔法,图 2.18 中共有三个支路,两个网孔。设想在每个网孔中,都有一个电流沿网孔边界环流,其参考方向如图所示,这样一个在网孔内环行的假想
22、电流叫做网孔电流。,图2.18 网孔法举例,从图中可以看出,各网孔电流与各支路电流之间的关系为I1=Im1I2=-Im1+Im2I3=-Im2即所有支路电流都可以用网孔电流线性表示。由于每一个网孔电流在流经电路的某一节点时,流入该节点之后,又同时从该节点流出,因此各网孔电流都能自动满足KCL,就不必对各独立节点另列KCL方程,所以省去了n-1个方程。这样,只要列出KVL方程就可以了,使方程数目减少为b-(n-1)个。电路的变量网孔电流也是b-(n-1)个。,原则上讲,用网孔法列写KVL方程与用支路电流法列写KVL方程是一样的,但这时,是用网孔电流来表示各电阻上的电压降的。有些电阻中会有几个网孔
23、电流同时流过,列写方程时应该把各网孔电流引起的电压降都计算进去。通常,选取网孔的绕行方向与网孔电流的参考方向一致。于是,对于图2.18所示电路,有R1Im1+R2Im1-R2Im2=Us1-Us2R2Im2-R2Im1+R3Im2=Us2-Us3这就是以网孔电流为未知量时列写的KVL方程,称为网孔方程。,(2.19),方程组(2.19)可以进一步写成R11Im1+R12Im2=Us11R21Im1+R22Im2=Us22(2.20)上式就是当电路具有两个网孔时网孔方程的一般形式,其中:R11=R1+R2,R22=R2+R3分别是网孔 1 与网孔 2 的电阻之和,称为各网孔的自电阻。因为选取自电
24、阻的电压与电流为关联参考方向,所以自电阻都取正号。R12=R21=-R2是网孔 1 与网孔 2 公共支路的电阻,称为相邻网孔的互电阻。互电阻可以是正号,也可以是负号。当流过互电阻的两个相邻网孔电流的参考方向一致时,互电阻取正号,反之取负号。,本例中,由于各网孔电流的参考方向都选取为顺时针方向,即流过各互电阻的两个相邻网孔电流的参考方向都相反,因而它们都取负号。Us11=Us1-Us2,Us22=Us2-Us3分别是各网孔中电压源电压的代数和,称为网孔电源电压。凡参考方向与网孔绕行方向一致的电源电压取负号,反之取正号,这是因为将电源电压移到等式右边要变号的缘故。,式(2.20)也可以推广到具有m
25、个网孔的平面电路,其网孔方程的规范形式为R11Im1+R12Im2+R1mImm=Us11R21Im1+R22Im2+R2mImm=Us22Rm1Im1+Rm2Im2+RmmImm=Usmm(2.21),如果电路中含有电流源与电阻并联组合,先把它们等效变换成电压源与电阻的串联组合,再列写网孔方程。如果电路中含有电流源,且没有与其并联的电阻,这时可根据电路的结构形式采用下面两种方法处理:一种方法是,当电流源支路仅属一个网孔时,选择该网孔电流等于电流源的电流,这样可减少一个网孔方程,其余网孔方程仍按一般方法列写;另一种方法是,在建立网孔方程时,可将电流源的电压作为一个未知量,每引入这样一个未知量,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直流 电阻 电路 分析 计算
链接地址:https://www.31ppt.com/p-5369707.html