《三角形的内角和》教学反思.doc
《《三角形的内角和》教学反思.doc》由会员分享,可在线阅读,更多相关《《三角形的内角和》教学反思.doc(21页珍藏版)》请在三一办公上搜索。
1、三角形的内角和教学反思 三角形的内角和教学反思1三角形的内角和是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180。一、创设情境,营造探究氛围。怎样提供一个良好的探究平台,使学生有兴趣去研究三角形内角的和呢?这节课在复习旧知“三角形的特征”后,我引出了研究问题“三角形的内角指的是什么?”“三角形的内角和是多少?”。而画一个有两个内角是直角的三角形却无法画出这一问题的出现,使学生萌生了想了解其中奥秘的想法,激发了学生探究新知的欲望。由于学生对三角尺上每个
2、角的度数比较熟悉,新知的探究就从这里入手。我先让学生分别算出每块三角尺三个内角的和都是180,由此引发学生的猜想:其它三角形的内角和也是180吗?二、小组合作,自主探究。“是否任何三角形的内角和都是180呢?”,我趁势引导学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折、算一算。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180。之后我组织学生在全班汇报交流,有的小组通过量一量、 算一算的方法,得出三角形的内角和是180或接近180(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三
3、个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180的结论。这一系列活动潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。三、练习设计,由易到难。探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排2个层次,由易到难,逐步加深。在应用“三角形的内角和是180”这一结论时,第一层练习是已知三角形两个内角或一个内角的度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比
4、较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。这些练习顾及到了智力水平不同的学生,形式上具有趣味性,激发了学生主动解题的积极性。这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。三角形的内角和教学反思2背景:最近,张店区教研室举行了“青年教师优质课”评选,我们学校有位刚毕业一年的年轻教师参加。经过大家共同选教材、研究商量后,确定参评课题为“三角形的内角和”。这是新实验教材四年级下册的内容,从教材上看,教学内容比较简单,就是让学生亲自动手,通过量、剪、拼、折等方法推
5、导出三角形内角和是180,会应用这一规律进行计算。很显然,许多学生肯定有这样的知识经验,每个班都有部分学生已经能说出这一知识点。根据这样的现状我们让年轻教师根据自己的理解先备课、设计教学思路,随后我们进行了跟踪听课。试讲教学片断:创设情境,引入新知:教师先出示色彩鲜艳,用卡纸制作的学具:钝角三角形、锐角三角形、直角三角形等,让学生分辨,复习上节课的内容。学生回答的轻车熟路,感觉非常简单。继而教师拿出直角三角形,说道:“请大家画出一个直角三角形。”很快,学生便大功告成,举起画完的作品让老师看。老师边点头边露出赞许的微笑。接着提出第二个问题:“聪明的同学们,能不能画出有两个直角的三角形呢?画画试试
6、。”没出5秒钟,反应快的学生便脱口而出:“老师,画不出来!”老师紧接追问:“为什么呢?”学生:“因为三角形的内角和是180,两个直角就是180了,画不出第三个角了。所以画不成三角形。”学生说得太好了,老师赶紧接过了话题:“这位同学说三角形的内角和是180,你们知道吗?”其他学生似乎还没明白怎么回事,只好连忙点头说知道。教师肯定的说:“是的,三角形的内角和就是180,我们怎么想办法验证一下呢?请大家想想办法。”学生经过很长时间的合作、探究,得出了三种办法,全班交流汇报。练习分为基本练习和综合练习两个层次。学生计算的没多大问题。最后一题是思维拓展练习:研究一下四边形的内角和?五边形、六边形的内角和
7、呢?多边形呢?因时间的关系,无一人能够想出策略。反思:教师创设情境采用的是给学生制造思维障碍的方法,让学生画出有“两个”直角的三角形,欲擒故纵,有其果,学生肯定会究其因,同时,还能让学生在体验中,寻找数学的真谛,此创设情境的方法真是妙哉。听课时,我也为他这样的设计感到高兴,心想,一定能产生好的教学效果,但事实却不是如此,学生一堂课显得比较沉闷,只有部分好学生在迎合老师,学生并没有充分的参与到数学学习中来。课后,我反复的思考,为什么会这样呢?后来发现原因有以下几点:一是因为教师在出示问题时,没有把“两个”直角三角形的“两个”强调清楚,有许多学生没有听清要求;二是因为教师没有留给学生充分的思考的时
8、间,好学生反应快,答案脱口而出,其他学生思维还没产生任何的碰撞,更没经历实验的过程。三是我们现在教育体制下的学生大都缺少质疑权威的意识和习惯,显得顺从,没有主张和个性。在好学生说出三角形的内角和是180后,其他学生对于这一知识点真正知道的有多少?但正因为是好学生的回答,在其他学生眼中,这是学习的权威啊,他说的肯定是对的,结果大家只有稀里糊涂的点头附和,是的,三角形的内角和是180度。在这一环节的教学中,很多学生就吃了夹生饭,根本没有透彻的理解和掌握。看似精彩的情境创设,如果得不到教师适度的调控和把握,也焕发不出它应有的光彩。新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基
9、础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。深刻的思考、仔细的推敲以上情境的创设,也不难发现,它尽管有它的闪光点,但也有不足的地方,就是它的设计引入没有从大部分学生的知识经验出发,没有照顾到全体,知道三角形内角和是180的学生毕竟是少数,这也就是它没能激发起学生学习欲望的原因所在。因此,在数学课堂教学中,我们要时刻注意发掘教材孕伏的智力因素,审时度势,把握时机,因势利导地为学生创造良好的教学情境 ,激发学生的兴趣,让学生在学习数学中愉快地探索。再者,最后一题
10、,是在学习了三角形内角和基础上的拓展,任何多边形都可以转化为多个三角形来计算内角和,学生无一人能够想出办法,仔细想想,是我们的题目出的太难,还是学生太笨呢?都不是,是我们教师的引导作用没发挥出来,没能激发起学生学习的内部活力,也就无谈学生的动手实验、猜想、验证。当然,学生的实验、猜想、验证能力的培养并不是一堂课的问题,而是朝朝夕夕,无声无息的渗透。作为任何一个站在教学前沿的教师,我们都应有这样的教学理念,让自己的学生在数学学习中通过观察、实验、归纳、类比、推断获得数学猜想,体验数学活动丰富的探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性。再次实践:经过大家的共同评课和授课教
11、师自己的反思,我们重新改变了创设情境的方法。师出示一正方形纸,问:这是一张(正方形)的纸,它有(4)个角,这4个角在数学里,我们给它一个名称,把它叫做正方形的(内角),而且每个内角都是(直角),那么它的内角和是多少度呢?为什么?生1:正方形的内角和是360,因为每个内角都是90,有4个内角,就是4个90,也就是360。师:现在,我们把这个正方形纸沿着对角线剪开后会怎样呢?(师演示,并指导生拿出正方形纸折一折、剪一剪)生3:通过刚才的观察与操作,我发现这样沿对角线剪开后,得到了2个三角形,都是等腰直角三角形。师:谁来猜想一下其中的1个三角形的内角和是多少度?生:通过刚才的观察与操作,我发现三角形
12、的内角和是180。因为正方形的内角和是360,沿对角线剪开后,等于把正方形平均分成了两份,也就是把360平均分成两份,每份是180,所以这个三角形的内角和是180。生:我发现三角形的内角和是180。因为沿正方形对角线剪开后,等于把正方形原来的直角平均分成了两份,每份是45,两个45加上90就得到180,所以我知道三角形的内角和是180。师:同学们猜的对不对呢?用什么办法可以知道?生:验证。师:对,需要经过验证。(分小组对三角形进行验证。看它的内角和是不是180)组织学生汇报 (测量的同学边汇报边板书,剪拼的同学利用投影汇报。)生1:我们用量角器对3个角进行了测量,再分别把3个角的度数相加,得出
13、了内角和为360。生2:我们将这个直角三角形的两个锐角用量角器测量,把两个锐角相加是90,再加上直角的度数,这样我们知道直角三角形的内角和是180。生3:我们小组将三角形的两个锐角剪下来,然后拼在一起组成了一个直角,再把另一个直角拿来拼在一起,这样组成了平角,证实直角三角形的内角和是180。生4:我们是先将一个角折过来,使它顶点落在底边上,再把另外两个角也折过来,这样三个角正好拼成一个平角,所以我们知道这个钝角三角形的内角和是180。三角形的内角和教学反思3今天教学三角形的内角和,对于三角板,学生是不陌生的,所以我们从一副三角板入手,让学生算出一副三角板的内角和是180,于是抛出问题,在其他三
14、角形中三个内角的和是不是也是180呢?学生当然会猜是。我觉得今天孩子不仅学到了三角形的内角和,还学到了对待一个猜想就要想办法来验证的数学思想。当我要求孩子们来验证的时候,有的孩子想到了量,有的孩子想到了折,这里我先让孩子们都去量,量了以后,因为有的同学量的不精确,所以我建议更精确的验证方法,孩子又想到了折,我又让孩子们去折。事后想想,如果我一开始就让孩子们尝试用自己喜欢的方法去验证一下,说不定碰撞的火花会跟激烈些。我这样一步一步来的话,就有些按部就班,没有那种水到渠成的感觉了。后来,校长提出,一开始有个孩子说到他量到175,比较接近180的时候,我只是强调要精确,却没有很好的利用这一资源,如果
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形的内角和 三角形 内角 教学 反思
链接地址:https://www.31ppt.com/p-536590.html