数字信号处理研究生课程.ppt
《数字信号处理研究生课程.ppt》由会员分享,可在线阅读,更多相关《数字信号处理研究生课程.ppt(80页珍藏版)》请在三一办公上搜索。
1、数字信号处理 II,刘艳 信息科学与工程学院Email:,预修课程,概率论与数理统计信号与系统数字信号处理1随机过程,课程主要内容,随机信号分析基础随机信号的变换技术频域分析时频域分析随机信号的滤波技术,课程讲述线索,本课程采用对不同处理对象的线索来讲解:确定性信号随机信号;平稳信号处理非平稳信号处理;时域频域时频分析;根据处理对象和应用背景的不同而选择相应的处理方法,成绩评定,平时作业 10%上机作业 20%闭卷考试 70%课件下载:http:/,教材及参考书,教材:丁玉美,数字信号处理时域离散随机信号处理,西安电子科技大学出版社,2002。张贤达,现代信号处理第二版,清华大学出版社,北京,
2、2002。参考书:胡广书,数字信号处理理论、算法与实现第二版,清华大学出版社,北京,2003。Roberto Cristi,Modern Digital Signal Processing,Thomson-Brooks/Cole,2004。Dimitris G.Manolakis,etc,Statistical and Adaptive Signal Processing,Mc Graw Hill,2000。,第一章 时域离散随机信号的分析,1.1 随机信号 1.2 时域统计表达1.3 Z域及频域的统计表达 1.4 随机序列数字特征的估计 1.5 平稳随机序列通过线性系统 1.6 时间序列信号
3、模型,1.1 随机信号,信号的分类随机变量及其统计描述随机信号及其统计描述,1.1.1 信号的分类,信号的分类:确定性信号随机信号平稳随机信号非平稳随机信号,1.1.2 随机变量,随机变量的统计描述:概率分布函数:概率密度函数:均值(一阶矩):均方值(二阶原点矩):方差(二阶中心矩):协方差:,1.1.3 随机信号,实际应用中,常常把随时间变化而变化的随机变量,称为随机过程。随机信号定义:一个随机信号X(t)是依赖时间t的一族随机变量,或者说它是所有可能的样本函数的集合。,图 1.1.1 n部接收机的输出噪声,X(t)=xi(t),i=1,2,3,X(t)是所有可能样本函数的集合,X(t1)=
4、xi(t1),i=1,2,3,X(t)=X(t1),X(t2),X(t3),X(t)是依赖时间t的一族随机变量,样本函数xi(t)或样本序列xi(n),随机信号X(t)或X(n),随机变量X(t1),X(t2),X(t3),特定时刻,随机信号的统计描述:一维概率分布函数:一维概率密度函数:上述两式只描述随机序列在某一时刻n的统计特性,而对于随机序列,不同n的随机变量之间并不是孤立的。,数学期望(统计平均值):均方值:方差:,一般均值、均方值和方差都是n的函数,但对于平稳随机序列,它们与n无关,是常数。,自相关函数:自协方差函数:,对于零均值随机序列,,这种情况下,自相关函数和自协方差函数没有什
5、么区别。,,则,互相关函数定义为,互协方差函数定义为,同样,当 时,,如果C(Xm,Yn)=0,则称信号Xm 与Yn互不相关。,1.2 平稳随机信号的时域统计表达,平稳随机信号的定义平稳随机信号相关函数的性质 平稳随机信号的各态遍历性,1.2.1 平稳随机信号的定义,狭义(严)平稳随机序列:随机信号的统计特性不随时间平移而变化。广义(宽)平稳随机序列:随机信号的均值和方差不随时间变化而变化,其相关函数与时间起点无关,仅是时间差的函数。,均值、方差和均方值均与时间无关:,自相关函数与自协方差函数是时间差的函数:,对于两个各自平稳且联合平稳的随机序列,其互相关函数为,显然,对于自相关函数和互相关函
6、数,下面公式成立:,如果对于所有的m,满足公式:Rxy(m)=0,则称两个随机序列互为正交。如果对于所有的m,满足公式:Cxy(m)=0,则称两个随机序列互不相关。,Rxx(m)是Hermitian对称的,1.2.2 实平稳随机信号相关函数的性质,(1)自相关函数和自协方差函数是m 的偶函数,用下式表示:,(2)Rxx(0)数值上等于随机序列的平均功率:,(3)相关性随时间差的增大越来越弱:,(4)大多数平稳随机序列内部的相关性随着时间差的变大,愈来愈弱:,(5),1.2.3 平稳随机信号的各态遍历性,集合平均:由随机序列X(n)的无穷样本 在相应时刻n对应相加来实现的。,由上可知,集合平均要
7、求对大量的样本进行平均,实际中这种做法是不现实的。,时间平均:设x(n)是平稳随机序列X(n)的一条样本曲线,其时间平均值为,类似地,其时间自相关函数为,各态遍历性:对一平稳随机信号,如果它的所有样本函数在某一固定时刻的一阶和二阶统计特性(集合平均)和单一样本函数在长时间内的统计特性(时间平均)一致,则称其为各态遍历信号。意义:单一样本函数随时间变化的过程可以包括该信号所有样本函数的取值经历。直观理解:只要一个实现时间充分长的过程能够表现出各个实现的特征,就可以用一个实现来表示总体的特性。,x(n)=EX(n),x(n)x*(n+m)=EX(n)X*(n+m),1.3 平稳随机信号的Z域及频域
8、的统计表达,相关函数的Z变换平稳随机信号的功率密度谱,1.3.1 相关函数的Z变换,平稳随机序列是非周期函数,且是能量无限信号,无法直接利用傅里叶变换进行分析。由前面对自相关函数和自协方差函数的讨论可知:当 时,Rxx(m)是收敛序列。这说明虽然无限能量信号本身的z变换与傅氏变换不存在,但它的自协方差序列和自相关序列(当 时)的z变换与傅氏变换却是存在的,其Z变换用Pxx(z)表示如下:,且,因为,将上式进行Z变换,得到:,如果z1是其极点,1/z*1也是极点。Pxx(z)的收敛域包含单位圆,因此Rxx(m)的傅里叶变换存在。,令z=exp(j),可以得到Rxx(m)的傅立叶变换如下所示:,将
9、m=0代入上式,得到,随机序列的平均功率;,功率谱密度(简称功率谱),维纳辛钦定理(Wiener-Khinchin Theorem),1.3.2 平稳随机信号的功率密度谱,有限时间段随机信号x(t)的功率谱分布为:功率谱:协方差函数的Fourier变换,(1)功率谱是的偶函数:,实、平稳随机序列功率谱的性质,(2)功率谱是实的非负函数,即,Pxx()0,功率谱的分类:平谱(白噪声谱):一个平稳的随机序列w(n),如果其功率谱 在 的范围内始终为一常数。白噪声序列在任意两个不同的时刻是不相关的。若w(n)是高斯型的,那么它在任意两个不同时刻又是相互独立的。,线谱:由一个或多个正弦信号所组成的信号
10、的功率谱。若x(n)有L个正弦组成,即,其中,,是均匀分布的随机变量,可以求出,此即为线谱,它是相对与平谱的另一个极端情况。,ARMA谱:既有峰点又有谷点的连续谱,这样的谱可以由一个ARMA模型来表征。,1.4 随机序列数字特征的估计,估计准则均值的估计方差的估计自相关函数的估计,1.4.1 估计准则,估计方法:矩估计法、最大似然估计法、贝叶斯估计、最小均方误差估计、最大后验估计,最小二乘估计、EM算法等。估计准则:无偏性、有效性、一致性,假定对随机变量x观测了N次,得到N个观测值:x0,x1,x2,xN-1,希望通过这N个观测值估计参数,称为真值,它的估计值用表示。是观测值的函数,假定该函数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字信号 处理 研究生课程

链接地址:https://www.31ppt.com/p-5361075.html