椭圆曲线密码技术.ppt
《椭圆曲线密码技术.ppt》由会员分享,可在线阅读,更多相关《椭圆曲线密码技术.ppt(55页珍藏版)》请在三一办公上搜索。
1、橢圓曲線密碼技術,交通大學 資訊工程系陳榮傑 http:/www.cs.nctu.edu.tw/rjchen/ECC2012S/,Outline,1 Discrete Logarithm Problem2 Algorithms for Discrete Logarithm3 Cryptosystems Based on DLP4 Elliptic Curves5 Elliptic Curve DLP6 Signature Scheme:ECDSA7 How to find secure ECs?8 Hyperelliptic Curves9 ID-based Cryptosystems10 P
2、airing-based Cryptography,Let G is a finite cyclic group of size n generated by generator g,i.e.G=g i|i=1,2,n or g i|i=0,1,n-1Given g and i,it is easy to compute gi by repeated squaringDiscrete logarithm problem Given,find x such that We denote,1 Discrete Logarithm Problem,Example 1G=Z19*=1,2,18n=18
3、,generator g=2 then log214=7 log26=14,Example 2G=GF*(23)with irreducible poly.p(x)=x3+x+1G=Zn*/p(x)=1,x,x2,1+x,1+x2,x+x2,1+x+x2 n=7,generator g=xthen logx(x+1)=3 logx(x2+x+1)=5 logx(x2+1)=6,Example 3Let p NB:p=158(2800+25)+1 and has 807 bits.Find x in Z,such that 2x=3 mod p,2 Algorithms for Discrete
4、 Logarithm,trivial algorithmShanks algorithm(Baby-step giant-step)Pollard rho discrete log algorithmPohlig-Hellman algorithmThe index calculus method*,The index calculus method,The index calculus method(Suitable only for G=Zp*),Example log59451 mod 10007=?Choose B=2,3,5,7.Of course log55=1.Use lucky
5、 exponents 4063,5136,and 9865 54063 mod 10007=42=2*3*7 55136 mod 10007=54=2*33 59865 mod 10007=189=33*7 And we have three congruences:log52+log53+log57=4063 mod 10006 log52+3 log53=5136 mod 10006 3 log53+log57=9865 mod 10006,There happens to be a unique solution modulo 10006 log52=6578,log53=6190,an
6、d log57=1301Choose random exponent s=7736 and try to calculate ags=9451*57736 mod 10007=8400 Since 8400=24*3*52*7 factors over B,we obtain log59451=(4 log52+log53+2 log55+log57 s)mod 10006=(4*6578+6190+2*1+1301 7736)mod 10006=6057 mod 10006,Complexity of Index Calculus,For factoring and the discrete
7、 logarithm problem in finite fields Fq*there are index calculus algorithm(implemented with Number Field Sieve technique)These have subexponential complexity O(exp(c(lnN)1/3(lnlnN)2/3),3 Cryptosystems based on DL,Key DistributionDiffie-Hellman,1976EncryptionMassey-Omura cryptosystem,1983 Digital Sign
8、atureElGamal,1985,Diffie-Hellman Key Exchange Algo,Global Public Elementsq:prime number:q and is a primitive root of qUser A Key GenerationSelect private XA:XA qCalculate public YA:YA=XA mod qUser B Key GenerationSelect private XB:XB qCalculate public YB:YB=XB mod qGeneration of Secret Key by User A
9、K=(YB)XA mod qGeneration of Secret Key by User BK=(YA)XB mod q,User A,User B,Generate random XA q;Calculate YA=XA mod qCalculate K=(YB)XA mod q,Generate random XB q;Calculate YB=XB mod qCalculate K=(YA)XB mod q,YA,YB,Diffie-Hellman Key Exchange,Massey-Omura for message transmission,Parametersq:prime
10、 numbere:a random private integer 0 e q and gcd(e,q-1)=1d:an inverse of ed=e-1 mod q-1,i.e.,de1 mod q-1M:a message to be encrypted and decryptedUser A wants to send a message M to User BUser A:eA and dA are both privateUser B:eB and dB are both private,User A,User B,1.Encryption(1)C1=M eA mod q3.Enc
11、ryption(3)C3=C2dA=(M eAeB)dA=M eB mod q,2.Encryption(2)C2=C1eB=M eAeB mod q4.Decryption M=C3dB=M eBdB mod q,Massey-Omura for message transmission,C1,C2,C3,ElGamal signature scheme,1985 ElGamalParameters p:a large prime:a primitive number in GF(p)x:a private key,x 1,p-1 y:a public key,y=x(mod p)m:a m
12、essage to be signed,m 1,p-1 k:a random integer that is privately selected,k 0,p-2Signature r=k mod pm=ks+rx mod(p),where GCD(k,(p)=1(m,(r,s)is sent to the verifierVerificationm=rs yr mod pThe signature(r,s)is accepted when the equality holds true.,ElGamal encryption scheme,Parameters p:a large prime
13、:a primitive number in GF(p)a:a private key,a 1,p-1:a public key,=a(mod p)m:a message to be signed,m 1,p-1 k:a random integer that is privately selected,k 0,p-2K=(p,a,):public key+private keyEncryption eK(m,k)=(y1,y2)where y1=k mod p and y2=mk mod pDecryption m=dK(y1,y2)=y2(y1a)-1 mod p,(xP+Q,yP+Q),
14、(xP+Q,yP+Q),4 Elliptic Curves,Over Fields of Characteristic p3Curve formE:Y2=X3+aX+b where a,b Fq,q=pn 4a3+27b20Group operationgiven P1(x1,y1)and P2(x2,y2)compute P3(x3,y3)=P1+P2,Example:,P,-P,Q,P+Q,Example of EC over GF(p),Addition(P1P2)Doubling(P1=P2),Computational CostI+3 M,Computational CostI+4
15、M,Over Fields of Characteristic 2Curve formE:Y2+XY=X3+aX2+b where a,b Fq,b0,q=2nGroup operationgiven P1(x1,y1)and P2(x2,y2)compute P3(x3,y3)=P1+P2,Example of EC over GF(2m),Addition(P1P2)Doubling(P1=P2),Computational CostI+2 M+S,Computational CostI+2 M+S,5 Elliptic Curve DLP,Basic computation of ECC
16、Q=kP=where P is a curve point,k is an integerStrength of ECCGiven curve,the point P,and kPIt is hard to recover k-Elliptic Curve Discrete Logarithm Problem(ECDLP),Security of ECC versus RSA/ElGamalElliptic curve cryptosystems give the most security per bit of any known public-key scheme.The ECDLP pr
17、oblem appears to be much more difficult than the integer factorisation problem and the discrete logarithm problem of Zp.(no index calculus algo!)The strength of elliptic curve cryptosystems grows much faster with the key size increases than does the strength of RSA.,Elliptic Curve Security,NIST Reco
18、mmended Key Sizes,ECC BenefitsECC is particularly beneficial for application where:computational power is limited(wireless devices,PC cards)integrated circuit space is limited(wireless devices,PC cards)high speed is required.intensive use of signing,verifying or authenticating is required.signed mes
19、sages are required to be stored or transmitted(especially for short messages).bandwidth is limited(wireless communications and some computer networks).,6 Signature Scheme:ECDSA,Digital Signature Algorithm(DSA)Proposed in 1991Was adopted as a standard on December 1,1994Elliptic Curve DSA(ECDSA)FIPS 1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 椭圆 曲线 密码 技术
链接地址:https://www.31ppt.com/p-5360818.html