普通最小二乘法.ppt
《普通最小二乘法.ppt》由会员分享,可在线阅读,更多相关《普通最小二乘法.ppt(34页珍藏版)》请在三一办公上搜索。
1、普通最小二乘法(OLS)(rdinary Least Squares),17771855,高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。高斯和阿基米德、牛顿并列为世界三大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。,1.OLS的基本思想,普通最小二乘法(OLS)(rdinary Least Squares),对于,不同的估计方法可以得到不同的样本回归参数 和,所估计的 也就不同。理想的估计结果应使估计的 与真实的 的差(即剩余)总的来说越小越好 因 可正可负,总有,所以可以取 最小,即在观测值Y和X确定时,的大小决定于 和。要解决的问题::如
2、何寻求能使 最小的 和。,3,普通最小二乘法(OLS)(rdinary Least Squares),使因变量的观察值与估计值之间的离差平方和达到最小来求得 和 的方法。即,用最小二乘法拟合的直线来代表x与y之间的关系与实际数据的误差比其他任何直线都小,1.OLS的基本思想,普通最小二乘法(OLS)(rdinary Least Squares),用克莱姆法则求解得以观测值表现的OLS估计量:,5,取偏导数并令其为0,可得正规方程,或整理得,即,2.正规方程和估计量,6,为表达得更简洁,或者用离差形式的OLS估计量:容易证明由正规方程:注意:其中:本课程中:大写的 和 均表示观测值;小写的 和
3、均表示观测值的离差而且由样本回归函数可用离差形式写为,用离差表现的OLS估计量,在家庭可支配收入-消费支出例中,对于所抽出的一组样本数,参数估计的计算可通过下面的表进行。,因此,由该样本估计的回归方程为:,参数估计的最大或然法(ML),最大或然法(Maximum Likelihood,简称ML),也称最大似然法,是不同于最小二乘法的另一种参数估计方法,是从最大或然原理出发发展起来的其他估计方法的基础。基本原理:对于最大或然法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大。,在满足基本假设条件下,对一元线性回归模型:,随机抽取n组样本观测
4、值(Xi,Yi)(i=1,2,n)。,那么Yi服从如下的正态分布:,于是,Y的概率函数为,(i=1,2,n),假如模型的参数估计量已经求得,为,因为Yi是相互独立的,所以的所有样本观测值的联合概率,也即或然函数(likelihood function)为:,将该或然函数极大化,即可求得到模型参数的极大或然估计量。,由于或然函数的极大化与或然函数的对数的极大化是等价的,所以,取对数或然函数如下:,解得模型的参数估计量为:,可见,在满足一系列基本假设的情况下,模型结构参数的最大或然估计量与普通最小二乘估计量是相同的。,用样本去估计总体回归函数,总要使用特定的方法,而任何估计参数的方法都需要有一定的
5、前提条件假定条件简单线性回归的基本假定 为什么要作基本假定?只有具备一定的假定条件,所作出的估计才具有良好的统计性质。模型中有随机扰动项,估计的参数是随机变量,显然参数估计值的分布与扰动项的分布有关,只有对随机扰动的分布作出假定,才能比较方便地确定所估计参数的分布性质,也才可能进行假设检验和区间估计等统计推断。假定分为:对模型和变量的假定对随机扰动项的假定,14,简单线性回归模型的最小二乘估计,例如对于 假定模型设定是正确的(变量和模型无设定误差)假定解释变量X在重复抽样中取固定值。假定解释变量X是非随机的,或者虽然X是随机的,但与扰动项u是不相关的。(从变量X角度看是外生的)注意:解释变量非
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 普通 最小二乘法
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-5357254.html