时间序列计量经济学.ppt
《时间序列计量经济学.ppt》由会员分享,可在线阅读,更多相关《时间序列计量经济学.ppt(87页珍藏版)》请在三一办公上搜索。
1、时间序列计量经济学模型的理论与方法,第一节 时间序列的平稳性及其检验第二节 随机时间序列模型的识别和估计第三节 协整分析与误差修正模型,21.1 时间序列的平稳性及其检验,一、问题的引出:非平稳变量与经典回归模型二、时间序列数据的平稳性三、平稳性的图示判断四、平稳性的单位根检验五、单整、趋势平稳与差分平稳随机过程,一、问题的引出:非平稳变量与经典回归模型,常见的数据类型,到目前为止,经典计量经济模型常用到的数据有:时间序列数据(time-series data);截面数据(cross-sectional data)平行/面板数据(panel data/time-series cross-sec
2、tion data)时间序列数据是最常见,也是最常用到的数据。,经典回归模型与数据的平稳性,经典回归分析暗含着一个重要假设:数据是平稳的。数据非平稳,大样本下的统计推断基础“一致性”要求被破怀。经典回归分析的假设之一:解释变量X是非随机变量放宽该假设:X是随机变量,则需进一步要求:(1)X与随机扰动项 不相关Cov(X,)=0,依概率收敛:,(2),第(2)条是为了满足统计推断中大样本下的“一致性”特性:,第(1)条是OLS估计的需要,如果X是非平稳数据(如表现出向上的趋势),则(2)不成立,回归估计量不满足“一致性”,基于大样本的统计推断也就遇到麻烦。,因此:,注意:在双变量模型中:,表现在
3、:两个本来没有任何因果关系的变量,却有很高的相关性(有较高的R2):例如:如果有两列时间序列数据表现出一致的变化趋势(非平稳的),即使它们没有任何有意义的关系,但进行回归也可表现出较高的可决系数。在现实经济生活中:情况往往是实际的时间序列数据是非平稳的,而且主要的经济变量如消费、收入、价格往往表现为一致的上升或下降。这样,仍然通过经典的因果关系模型进行分析,一般不会得到有意义的结果。,数据非平稳,往往导致出现“虚假回归”问题,时间序列分析模型方法就是在这样的情况下,以通过揭示时间序列自身的变化规律为主线而发展起来的全新的计量经济学方法论。,时间序列分析已组成现代计量经济学的重要内容,并广泛应用
4、于经济分析与预测当中。,二、时间序列数据的平稳性,时间序列分析中首先遇到的问题是关于时间序列数据的平稳性问题。,假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列Xt(t=1,2,)的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:1)均值E(Xt)=是与时间t 无关的常数;2)方差Var(Xt)=2是与时间t 无关的常数;3)协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关,与时间t 无关的常数;则称该随机时间序列是平稳的(stationary),而该随机过程是一平稳随机过程(stationary stochastic proce
5、ss)。,平稳随机过程 某一随机过程的均值和方差都为与实践无关的常数,并且在任何两期之间的协方差值仅仅依赖于该两期间的距离和滞后,而不依赖于计算的时间,这一随机过程就为平稳过程。简言之,若一个时间序列是平稳的,则不管在什么时间测量,它的均值、方差和(各种滞后的)自协方差都保持不变,即它们都不随时间而变化。平稳时间序列有回到其均值的趋势,可以称之为均值回复过程,围绕均值波动且有大致恒定的振幅。,严平稳的定义,非平稳过程 若某一过程不满足上述平稳过程定义中的某一条性质,即均值、方差和协方差都随时间而变化,或者其一会随时间变化,都为非平稳过程,随机游走过程就是非平稳过程随机游走过程分为:(1)不带漂
6、移的随机游走(即不存在常数项或截距项)(2)带漂移的随机游走(出现常数项或截距项),后面将会看到:如果一个时间序列是非平稳的,它常常可通过取差分的方法而形成平稳序列。事实上,随机游走过程是下面我们称之为1阶自回归AR(1)过程的特例 Xt=Xt-1+t 不难验证:1)|1时,该随机过程生成的时间序列是发散的,表现为持续上升(1)或持续下降(-1),因此是非平稳的,这种非平稳归因于过程中存在某种趋势;,只有当-11时,该随机过程才是平稳的。,2)|=1时,称为单位根过程,若一个变量序列中存在单位根,则这么变量就服从随机游走或称为非平稳的注:单位根和非平稳之间的关系如此之强,使得计量经济学家们通常
7、不加以区分地使用这两个词,即使他们知道趋势和单位根都是造成序列非平稳的原因,单整、趋势平稳与差分平稳随机过程,随机游走序列 Xt=Xt-1+t经差分后等价地变形为 Xt=t 由于t是一个白噪声,因此差分后的序列Xt是平稳的。,单整,一般地,如果一个时间序列经过d次差分后变成平稳序列,则称原序列是d 阶单整(integrated of d)序列,记为I(d)。显然,I(0)代表一平稳时间序列。现实经济生活中:1)只有少数经济指标的时间序列表现为平稳的,如利率等;2)大多数指标的时间序列是非平稳的,如一些价格指数常常是2阶单整的,以不变价格表示的消费额、收入等常表现为1阶单整。大多数非平稳的时间序
8、列一般可通过一次或多次差分的形式变为平稳的。但也有一些时间序列,无论经过多少次差分,都不能变为平稳的。这种序列被称为非单整的(non-integrated)。,如果一个时间序列经过一次差分变成平稳的,就称原序列是一阶单整(integrated of 1)序列,记为I(1)。,若一个时间序列的趋势完全可以预测而且保持不变,我们称为确定性趋势若这个时间序列的趋势不能预测,则称之为随机性趋势。,1)如果=1,=0,则(*)式成为一带位移的随机游走过程:Xt=+Xt-1+t(*)根据的正负,Xt表现出明显的上升或下降趋势。这种趋势称为随机性趋势(stochastic trend)。2)如果=0,0,则
9、(*)式成为一带时间趋势的随机变化过程:Xt=+t+t(*)根据的正负,Xt表现出明显的上升或下降趋势。这种趋势称为确定性趋势(deterministic trend)。,考虑如下的含有一阶自回归的随机过程:Xt=+t+Xt-1+t(*)其中:t是一白噪声,t为一时间趋势。,3)如果=1,0,则Xt包含有确定性与随机性两种趋势。,判断一个非平稳的时间序列,它的趋势是随机性的还是确定性的,可通过ADF检验中所用的第3个模型进行。该模型中已引入了表示确定性趋势的时间变量t,即分离出了确定性趋势的影响。因此,(1)如果检验结果表明所给时间序列有单位根,且时间变量前的参数显著为零,则该序列显示出随机性
10、趋势;(2)如果没有单位根,且时间变量前的参数显著地异于零,则该序列显示出确定性趋势。,随机性趋势可通过差分的方法消除,如:对式Xt=+Xt-1+t 可通过差分变换为 Xt=+t 该时间序列称为差分平稳过程(difference stationary process);,确定性趋势无法通过差分的方法消除,而只能通过除去趋势项消除,,如:对式Xt=+t+t可通过除去t变换为Xt-t=+t该时间序列是平稳的,因此称为趋势平稳过程(trend stationary process)。最后需要说明的是,趋势平稳过程代表了一个时间序列长期稳定的变化过程,因而用于进行长期预测则是更为可靠的。,谬误回归现象
11、,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联关系,这时对这些数据进行回归,尽管有较高的R2,但其结果是没有任何实际意义的。这种现象我们称之为虚假回归或伪回归(spurious regression)。,为了避免这种虚假回归的产生,通常的做法是引入作为趋势变量的时间,这样包含有时间趋势变量的回归,可以消除这种趋势性的影响。,然而这种做法,只有当趋势性变量是确定性的(deterministic)而非随机性的(stochastic),才会是有效的。换言之,如果一个包含有某种确定性趋势的非平稳时间序列,可以通过引入表示这一确定性趋势的趋势变量,而将确定性趋势分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 时间 序列 计量 经济学
链接地址:https://www.31ppt.com/p-5357035.html