时间序列分析法一.ppt
《时间序列分析法一.ppt》由会员分享,可在线阅读,更多相关《时间序列分析法一.ppt(69页珍藏版)》请在三一办公上搜索。
1、市场调查与预测,seize the future抓住未来,Know your world.了解您的世界,第十章 时间序列市场预测法(一)以平均数为基础的各种时序预测法,10.1时间序列市场预测法的步骤,概念,时间序列(动态数列或时间数列)是指把历史统计资料按时间顺序排列起来得到的一组数据序列。例如,按月份排列的某种商品的销售量;工农业总产值按年度顺序排列起来的数据序列等等,都是时间序列时间数列是以固定时间间隔(每小时、每日、每周、每月、每季、每年等)为基础的时间顺序的观察值,10.1时间序列市场预测法的步骤,概念,时间序列预测法(历史延伸法或趋势外推法)是将预测目标的历史数据按时间的顺序排列成
2、为时间序列,然后分析它随时间变化的发展趋势,外推预测目标的未来值也就是说,时间序列预测法将影响预测目标的一切因素都由“时间”综合起来加以描述因此,时间序列预测法主要用于分析影响事物的主要因素比较困难或相关变量资料难以得到的情况,预测时先要进行时间序列的模式分析,10.1时间序列市场预测法的步骤,概念,时间序列预测法通常又分为移动平均法、指数平滑法、趋势外推法、季节分析法和生命周期法等多种方法,我们主要学习几种常见的时间序列的模式和常用的时间序列预测方法,长期趋势变动,长期趋势是指时间序列观察值即市场现象,在较长时期内持续存在的总态势,反映市场预测对象在长时期内的变动趋势长期趋势的具体表现有:水
3、平型变动:无明显趋势变动趋势型变动:明显趋势变动(上升、下降),10.1时间序列市场预测法的步骤,长期趋势变动,水平型水平型时间序列模式是指时间序列各个观察值呈现出围绕着某个定值上下波动的变动形态。如某些非季节性的生活必需品的逐月销售量等等。以某商品销售量为例,水平型模式如下图所示,水平型时间序列模式,10.1时间序列市场预测法的步骤,趋势型指时间序列在一定时期虽出现小范围的上下波动,但总体上呈现出持续上升或下降趋势的变动形态。如高档耐用消费品的经济寿命曲线等。趋势型时间序列模式依其特征不同又可分为线性(如下图所示)和非线性趋势模式趋势变动(Trend Variation):指历史资料逐渐且缓
4、慢的呈现上升或下降的变化,图 趋势型时间序列模式(线性),长期趋势变动,10.1时间序列市场预测法的步骤,季节变动,季节变动(Seasonality Variation)一般是指市场现象以年度为周期,随着自然季节的变化,每年都呈现的有规律的循环变动。这种模式往往是指以年为变动周期,按月或按季度编制的时间序列,如许多季节性消费品的按月、按季销售量等广义的季节变动还包括以季度、月份以至更短时间为周期的循环变动市场现象季节变动主要是由自然气候、风俗习惯、地理环境、人为因素等因素引起的,十分规则且定期变化对于季节性变动的现象,有专门的季节变动预测法加以具体研究,反映和描述其变动特点和规律,10.1时间
5、序列市场预测法的步骤,T,循环变动,循环变动(Cycles Variation):指历史资料超过一年以上的循环波浪式的上下变化,大都因经济或政治因素造成,10.1时间序列市场预测法的步骤,不规则变动,也叫随机变动或杂讯(Random Variation):变动因素除上述变动原因外的其他变动指时间序列所呈现的变化趋势走向升降不定、没有一定的规律可循的变动势态。这种现象往往是由于某些偶然因素引起的,如经济现象中的不规则变动、政治变动以及自然气候的突变等因素所致。对于这类时间序列模式,很难运用时间序列预测方法做出预测,但有时也可通过某种统计处理,消除不规则因素影响,找出事物的固有变化规律,从而进行分
6、析预测,10.1时间序列市场预测法的步骤,10.3 移动平均市场预测法,移动平均市场预测法,是对时间序列观察值,由远向近按一定跨越期计算平均值的一种预测方法,移动平均市场预测法的概念,10.3 移动平均市场预测法,移动平均法的两大显著特点:第一,对于较长观察期内,时间序列的观察值变动方向和程度不尽一致,呈现波动状态,或受随机因素影响比较明显时,移动平均法能够在消除不规则变动的同时,又对其波动有所反映。也就是说,移动平均法在反映现象变动方面是较敏感的第二,移动平均预测法所需贮存的观察值比较少,因为随着移动,远期的观察值对预测期数值的确定就不必要了,这一点使得移动平均法可长期用于同一问题的连续研究
7、,而不论延续多长时间,所保留的观察值是不必增加的,只需保留跨越期个观察值就可以了,移动平均法的特点,10.3 移动平均市场预测法,移动平均法的准确程度,主要取决于跨越期选择是否合理。预测者确定跨越期长短要根据两点:一是要根据时间序列本身的特点二是要根据研究问题的需要移动平均预测法,适合于既有趋势变动又有波动的时间序列,也适合于波动的季节变动现象的预测其主要作用,是消除随机因素引起的不规则变动对市场现象时间序列的影响移动平均的具体方法:一次移动平均法二次移动平均法加权移动平均法,移动平均市场预测法中跨越期的确定,移动平均法主要是利用近几期真实资料取得平均,再以平均值來预测下一期的资料其主要使用在
8、短期预测资料系統当n值愈大,求出之平均值結果越接近母数,但若取之值太大則無法反映市場瞬间变化当n值越小,易將历史资料除掉,越能即時反映現在市場現況n要如何決定为最佳,可使用平均绝对偏差作为一項評判的方法,10.3 移动平均市场预测法,10.3 移动平均市场预测法,一次移动平均法:是对时间序列按一定跨越期(移动平均期),移动计算观察值的算术平均数,其平均数随着观察值的移动而后向移动Mt(1)为第t 期的一次移动平均值,以此作为第t+1期的预测值。,1.一次移动平均市场预测法,10.3 移动平均市场预测法,1.一次移动平均市场预测法,一次移动平均值的计算公式为:,=,=,-,n,i,i,t,t,Y
9、,n,M,1,),1,(,1,=,=,+,-,n,i,i,t,t,Y,n,M,1,1,),1,(,1,+,1,=,n,-,1,t,Y,-,2,t,Y,-,n,t,Y,+,+,+,=,n,t,Y,-,1,t,Y,-,n,t,Y,+,+,+,+,1,=,t,M,),1,(,+,1,t,M,),1,(,+,t,Y,-,n,t,Y,n,-,跨越期数(1nN),第t期的观察值(t=1,2,3 N),第t期和第t+1期的一次移动平均值,调整值,10.3 移动平均市场预测法,EX:对某商业企业季末库存进行预测,其资料和计算见表。由表观察资料可以看出,季末库存额总的来说无趋势变动,但有些小的波动。为了消除随机
10、因素引起的不规则变动,对观察值做一次移动平均。并以移动平均值为依据预测库存额的未来变化。为了对比观察预测误差的大小,分别取跨越期n=3,n=5同时计算,1.一次移动平均市场预测法,10.3 移动平均市场预测法,1.一次移动平均市场预测法,10.3 移动平均市场预测法,1.一次移动平均市场预测法,1.计算一次移动平均值,=,=,-,n,i,i,t,4,Y,n,M,1,),1,(,1,=,3,Y3 Y2 Y1,=,3,11.110.810.6,=10.83(万元),=,=,-,n,i,i,t,14,Y,n,M,1,),1,(,1,=,3,Y13Y12Y11,=,3,10.410.712.2,=11
11、.1(万元),10.3 移动平均市场预测法,1.一次移动平均市场预测法,2.计算各期移动平均值与实际观察值的离差绝对值,并计算平均绝对误差,|et|,MAE,=,n,6.19,=,11,=,0.563(万元),|et|,MAE,=,n,5.96,=,9,=,0.662(万元),当n5时,根据表中计算结果由于n5时的预测误差明显大于n3时的误差,所以舍弃n5时的预测设想,确定采用n3时的结果进行预测,|e4|10.410.83|0.43(万元),|e5|11.210.7|0.43(万元),|e14|11.211.7|0.1(万元),10.3 移动平均市场预测法,1.一次移动平均市场预测法,3.对
12、下期库存额进行预测,=,=,-,n,i,i,t,15,Y,n,M,1,),1,(,1,=,3,Y14Y13Y12,=,3,11.210.410.7,=10.77(万元),10.3 移动平均市场预测法,优点:可以消除由于偶然因素引起的不规则变动,同时又保留了原时间序列的波动规律。而不是象简易平均法那样,仅用若干个观察值的一个平均数作为预测值另外,每一个移动平均值只需几个观察值就可计算,需要贮存的数据很少局限:只能向未来预测一期对于有明显趋势变动的市场现象时间序列,一次移动平均法是不适合的,它只适用于基本呈水平型变动,又有些波动的时间序列,可以消除不规则变动的影响,1.一次移动平均市场预测法,10
13、.3 移动平均市场预测法,1.一次移动平均市场预测法,10.3 移动平均市场预测法,1.一次移动平均市场预测法,由上两图可以看出,实际销售量的随机波动较大,经过移动平均后,随机波动显著减小,即消除了干扰,而求取平均值所用的月数越多,即N越大,修匀的程度也越大,因此,波动也越小。但是,在这种情况下,对实际销售量真实的变化趋势反应也越迟钝。反之,如果N取得越小,对销售量真实变化趋势反应越灵敏,但修匀性越差,容易把随机干扰作为趋势反映出来因此,N的选择甚为重要,N应取多大,应该根据具体情况作出快择。当y等于周期变动的周期时,则可消除周期变动的影响,10.3 移动平均市场预测法,二次移动平均法(趋势移
14、动平均法):是对一次移动平均值再进行第二次移动平均,并在此基础上建立预测模型,求出预测值的预测方法一次移动平均法不适用于趋势变动时间序列,因为一次移动平均值大大滞后于实际观察值为了解决这个矛盾,就在一次移动平均的基础上,建立了二次移动平均的方法,二次移动平均预测法解决了预测值滞后于实际观察值的矛盾,适用于有明显趋势变动的市场现象时间序列进行预测,同时它还保留了一次移动平均法的优点,2.二次移动平均市场预测法,10.3 移动平均市场预测法,二次移动平均法:二次移动平均预测法的预测模型:,2.二次移动平均市场预测法,=,=,-,n,i,i,t,t,Y,n,M,1,),1,(,1,=,n,t,Y,-
15、,1,t,Y,-,n+1,t,Y,+,+,+,第t期的一次移动平均值,第t期的二次移动平均值,跨越期数(1nN),向未来预测的期数,截距,即第t期现象的基础水平,斜率,即第t期单位时间变化量,at=2Mt(1)Mt(2)bt=2(Mt(1)Mt(2)/(n 1),10.3 移动平均市场预测法,2.二次移动平均市场预测法,EX:对某地区某种商品的销售量进行预测。其资料和计算见表。,10.3 移动平均市场预测法,2.二次移动平均市场预测法,1.计算一次和二次移动平均值,=,4,M,),1,(,3,Y3+Y2+Y1,=,3,17+12+10,=13(吨),=,13,M,),1,(,3,Y12+Y11
16、+Y10,=,3,37+33+34,=34.67(吨),=,5,M,),2,(,3,=,3,19.66+16.33+13.0,=16.33(吨),5,M,),1,(,+,M,),1,(,4,3,M,),1,(,+,=,12,M,),2,(,3,=,3,34.67+32.33+31.00,=32.67(吨),12,M,),1,(,+,M,),1,(,11,10,M,),1,(,+,一次移动平均值,二次移动平均值,10.3 移动平均市场预测法,2.二次移动平均市场预测法,2.计算各期的a、b值,=,5,a,=,19.66 216.33,5,2M,),1,(,M,),2,(,5,=22.99(吨),
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 时间 序列 分析
链接地址:https://www.31ppt.com/p-5357021.html