金融工程3.ppt
《金融工程3.ppt》由会员分享,可在线阅读,更多相关《金融工程3.ppt(91页珍藏版)》请在三一办公上搜索。
1、Dr.Fan,1,4.1 连续复利,假设将金额A存于银行,名义年利率为R,计息方式为年度复利,那么n年之后,这笔存款的数额将升为:半年计息一次每年计息m次当m接近于无穷,第四章 利率及其他,零息利率(zero-coupon interest rate,zero rate,又称即期利率spot rate)指从当前时点开始至未来某一时点止的利率,有时也称零息债券收益率(Zero-coupon yield)。零息利率曲线zero curve:描述零息利率与到期时间的函数关系的图。远期利率(forward interest rate)指从未来某时点开始至未来另一时点止的利率。是由当前即期利率隐含的将来
2、一定期限的利率,4.2零息利率与远期利率,计算零息利率(boostrap法),零息债券零息债券形式上不支付利息,因此其在到期时支付的本金超过购买价的部分是实际利息。零息债券只在到期时兑现实际利息,因而其收益率是”纯粹利率“。附息债券附息债券除了在到期时支付本金外,还在到期前每年或者每半年支付一次利息。由于一张附息债券包含了不同期限的现金支付,因此其收益率是“混合利率”。从长期国债推算零息债券收益率(即零息利率):息票剥离法bootstrap method(课本P77-78),计算零息利率(boostrap法),条件已知零息债券收益率(R1,T1),(R2,T2),(Rn-1,Tn-1)已知附息
3、债券当前价格P,息票率R及期限Tn附息债券支付利息的时间恰好为T1,T2,Tn求Tn时的零息债券收益率Rn推导附息债券各期现金流折现成为现值等于当期价格除Rn外均为已知,解方程得Rn,计算远期利率,条件T2年零息(连续)利率为R2T1年即期连续利率为R1,T1 T2求从第T1年开始的T2-T1年远期利率RF资产组合直接以R2的年利率投资T2年以R1的年利率投资T1年,然后以f的远期利率投资T2-T1年。两者的收益率应该是一致的。(假设都是无风险利率),远期利率的推算,如果零息收益率曲线在T1和T2之间是向上倾斜的,即R2R1,那么远期利率将比R1和R2都大;如果向下倾斜,则比两个利率都小,利率
4、期限结构,远期利率,零息债券收益率,附息债券收益率,期限,利率期限结构,远期利率,零息债券收益率,附息债券收益率,期限,瞬时远期利率,在远期利率的计算公式中,如果T2(无限)逼近于T1,将共同值记为T,那么可以得到:以这种方式得到的RF叫期限为T的瞬时远期利率(instantaneous forward rate),4.3债券定价,理论价格:对未来的每一笔现金流采用合适的零息利率折现。债券收益率:使其现金值等于其市场价值的折现率。可以通过迭代法求出。平价收益率:使债券价格等于平价(即本金)的息票率。通常假设半年付息一次。具体内容见课本P76.,4.4利率期限结构理论,什么决定着零息收益率曲线的
5、形状?预期理论远期利率即为预期的未来即期利率。利率随期限变长而上升意味着投资者预期未来利率上升。流动性偏好理论资金的供给者偏好流动性高(期限短)的债券。长期债券必须提供利率升水以吸引资金的供给者。,对冲压力理论尽管流动性对商业银行来说是必须考虑的关键因素,但是,并非所有的投资者都偏好短期债券由于负债具有长期性,人寿保险公司与养老基金等机构投资者为了对冲风险更加偏好投资于长期债券要使偏好长期(短期)债券的投资者投资于短期(长期)债券,那么短期(长期)利率必须比长期(短期)利率更具吸引力在预期利率不变的情况下,收益率曲线的形态取决于偏好长期债券的投资者与偏好短期债券的投资者的力量对比对冲压力理论的
6、极端形式为:短期债券市场与长期债券市场是完全分割的,长期债券与短期债券的收益率取决于各自市场的供需状况,4.5远期利率协议,远期利率协议(Forward Rate Agreements)指的是协议双方约定在将来某个确定时间按照确定的数额、利率和期限进行借贷的合约。远期利率协议一般不进行实际的借贷,而是以约定利率与市场利率的差额现金结算。图示,0,1,2,签订协议,借贷,还本付息,0,1,2,签订协议,现金结算,一份远期利率协议是交易双方为规避未来利率波动风险,或是以未来利率波动为基础进行投机而签订的一份协议。作为避险者(hedger),他早已暴露在利率波动的风险中,但他希望能够避开这类风险。当
7、他处于远期利率波动的风险中,并持有远期利率协议头寸后,避险者的净风险就会降低或完全消失。作为投机者(speculatior),他开始时不会面临利率波动的风险,但是他希望能够从预期的利率波动中获取利润。对于投机者而言,持有远期利率协议的头寸,就会获得他所希望的利率风险。,协议远期利率,这分协议对出借方来说,0期的价值为:V(0)=100eRk(T*-T)e-r*T*-100e-rT考虑到远期合约在订立时价值为0,所以:RK(T*-T)r*T*-rT也即,r,0,T,T*,RK,r*,结算,在T时点,双方或者履行协议或者现金结算。结算金额假设T时点时的即期利率(至T*)为R资金的出借方在T时点的净
8、盈利/亏损为:如果RKR,则出借方有盈利,反之则亏损。,远期利率协议的价值,条件0tT,r和r”为在t期时期限为T-t和T*-t的即期利率。求远期利率协议的价值。推导 V(t)=100eRk(T*-T)e-r”(T*-t)-100e-r(T-t)考虑到,r,0,T,T*,RK,r”,t,示例,目前的1年期和2年期即期连续利率分别为2.5%和3%,问现在如果签订一份1年后生效的1年期远期利率协议,合理的协议连续利率是多少?假设过了9个月,3月期与15月期的即期连续利率分别为3%和4%。问原先签订的远期利率协议在这个时点上的价值是多少?假设每份协议的名义本金为100。,远期利率协定中的买方与卖方买
9、方向卖方支付从未来某一时刻开始的名义本金额(贷款或存款)的固定利率,同时向卖方收取相同名义本金额(贷款或存款)期限开始的浮动利率。即是卖方向买方支付名义本金额(贷款或存款)期限开始时的浮动利率,同时向买方收取相同名义本金额(贷款或存款)的固定利率。,远期利率协定的好处将浮动利率负债转换为固定利率负债,以确定未来要偿还的利息支出,或将浮动利率资产转换为固定利率资产 仅就差额部分进行交割,不牵涉本金的移动,可节省资金成本及汇入汇出资金等费用 FRA在未到期前,亦可反向操作,以结清原合同,较具灵活性,远期利率协定的局限性利率被锁定,但却使客户不能获得利率有利变化带来的好处。被保值的工具和远期利率协议
10、参考利率的联系不够紧密时,会存在保值不完全的风险,对公司而言,从事远期利率协定应指明所需的远期天数期间及名目本金 市场报价方式14 1个月后的3个月期利率 36 3个月后的3个月期利率 25 2个月后的3个月期利率 612 6个月后的6个月期利率,Dr.Fan,24,第五章 远期、期货及其定价,定价,基本思路:构建两种投资组合,让其终值相等,则其现值一定相等;否则的话,就可以进行套利套利者可以卖出现值较高的投资组合,买入现值较低的投资组合,并持有到期末,赚取无风险收益。众多套利者这样做的结果,将使较高现值的投资组合价格下降,而较低现值的投资组合价格上升,直至套利机会消失,此时两种组合的现值相等
11、。这样,我们就可根据两种组合现值相等的关系求出远期价格(无套利定价法)。,Dr.Fan,25,为分析简便起见,本章的分析是建立在如下假设前提下的:1、没有交易费用和税收。2、市场参与者能以相同的无风险利率借入和贷出资金。3、远期合约没有违约风险。4、允许现货卖空行为。5、当套利机会出现时,市场参与者将参与套利活动,从而使套利机会消失,我们算出的理论价格就是在没有套利机会下的 均衡价格。6、期货合约的保证金账户支付同样的无风险利率。这意味着任何人均可不花成本地取得远期和期货的多头和空头地位。,课本中符号的详细说明:T:远期合约到期日t:当前时点S:交割品在当前时点的现货价格ST:交割品在到期时的
12、现货价格(当前未知)K:远期合约规定的交割价格f:在当前时点远期合约多头的价值F:t时点的远期合约价格r:t时点的无风险年利率,以连续复利计算。,5.1 不支付收益资产的远期合约的定价,不支付收益资产是指在到期日前不产生现金流的资产,如贴现债券,或者是短期内不分红的股票,一、不支付收益资产远期合约多头的价值,组合A:一份远期合约多头1加上一笔数额为 Ke-r(T-t)的现金组合B:一单位标的资产 在组合A中,Ke-r(T-t)的现金以无风险利率投 资,投资期为(T-t)。到T 时刻,其金额将达 到K。这是因为:Ke-r(T-t)er(T-t)=K注1:该合约规定多头在到期日可按交割价格K购买一
13、单位标的资产。,在远期合约到期时,这笔现金刚好可用来交割换来一单位标的资产。这样,在T 时刻,两种组合都等于一单位标的资产。根据无套利原则,这两种组合在t 时刻的价值必须相等。因此:f+Ke r(T t)=S 即:f=S-Ke r(T t)(5.6),f=S-Ke r(T t),公式(5.6)表明,无收益资产远期合约多头的价值等于标的资产现货价格与交割价格现值的差额。或者说,一单位无收益资产远期合约多头可由一单位标的资产多头和Ke r(T t)单位无风险负债组成。,二、现货远期平价定理,由于远期价格(F)就是使合约价值(f)为零的交割价格(K),即当 f=0 时,K=F。据此可以令(5.6)式
14、中f=0,则:F=Se r(T t)(5.5)这就是无收益资产的现货远期平价定理(Spot-Forward Parity Theorem),或称现货期货平价定理(Spot-Futures Parity Theorem)。式(5.5)表明,对于无收益资产而言,远期价格等于其标的资产现货价格的终值。,为了证明公式(5.5),我们用反证法证明等式不成立时的情形是不均衡的假设F Se r(T t),即交割价格大于现货价格的终值。在这种情况下,套利者可以按无风险利率r借入S 现金,期限为T-t。然后用S 购买一单位标的资产,同时卖出一份该资产的远期合约,交割价格为F在T 时刻,该套利者就可将一单位标的资
15、产用于交割换来F 现金,并归还借款本息Se r(T t),这就实现了F-Se r(T t)的无风险利润。,若F Se r(T t),即交割价值小于现货价格的终值。套利者就可进行反向操作,即卖空标的资产,将所得收入以无风险利率进行投资,期限为T-t,同时买进一份该标的资产的远期合约,交割价为F在T 时刻,套利者收到投资本息Se r(T t),并以F 现金购买一单位标的资产,用于归还卖空时借入的标的资产,从而实现 Se r(T t)-F 的利润,5.2 支付已知现金收益资产远期合约的定价,支付已知现金收益的资产是指在到期前会产生完全可预测的现金流的资产,如附息债券和支付已知现金红利的股票等。我们令
16、已知现金收益的现值为I。对于黄金、白银等贵金属,尽管其本身并不产生收益,但需要花费一定的存储成本,而存储成本也可看成是负收益。因此对黄金、白银来说,I 为负值,一、支付已知现金收益资产的远期合约多头价值,为了给支付已知现金收益资产的远期定价,我们可以构建如下两个组合:组合A:一份远期合约多头加上一笔数额为 Ke r(T t)的现金;组合B:一单位标的证券加上利率为无风险 利率、期限为从现在到现金收益派发日、本金为I 的负债。,显然,组合A在T 时刻的价值等于一单位标的证券。在组合B中,由于标的证券的收益刚好可以用来偿还负债的本息,因此在T 时刻,该组合的价值也等于一单位标的证券。因此,在t 时
17、刻,这两个组合的价值应相等,即:f Ke r(T t)=SI 也即:f=SI Ke r(T t)(5.8),二、支付已知现金收益资产的现货远期平价公式,根据F的定义,F是使得 f=0 的K值,于是我们可从公式(5.8)中求得:F=(SI)e r(T t)(5.7)这就是支付已知现金收益资产的现货远期平价公式。公式(5.7)表明,支付已知现金收益资产的远期价格等于标的证券现货价格与已知现金收益现值差额的终值。,5.3 支付已知红利收益率资产远期合约的定价,支付已知收益率的资产是指在到期前将产生与该资产现货价格成一定比率的收益的资产外汇远期和期货:外汇发行国的无风险利率股价指数也可近似地看作是支付
18、已知收益率的资产。因为虽然各种股票的红利率是可变的,但作为反映市场整体水平的股指,其红利率是较易预测的远期利率协议:本国的无风险利率远期外汇综合协议:外汇发行国的无风险利率,支付已知收益率资产远期合约定价的一般方法,为了给出支付已知收益率资产的远期定价,我们可以构建如下两个组合:组合A:一份远期合约多头加上一笔数额为Ke r(T t)的现金;组合B:e q(T t)单位证券并且所有收入都再投资于该证券,其中q为该资产按连续复利计算的已知收益率。,显然,组合A在T 时刻的价值等于一单位标的证券。组合B拥有的证券数量则随着获得红利的增加而增加,在时刻T,正好拥有一单位标的证券。因此在t 时刻两者的
19、价值也应相等:f Ke r(T t)=Se q(T t)即 f=Se q(T t)Ke r(T t)(5.9),公式(5.9)表明,支付已知红利率资产的远期合约多头价值等于e q(T t)单位证券的现值与交割价现值之差。或者说,一单位支付已知红利率资产的远期合约多头可由e q(T t)单位标的资产和Ke r(T t)单位无风险负债构成。,根据远期价格的定义,我们可根据公式(5.9)算出支付已知收益率资产的远期价格:F=Se(r q)(T t)(5.10)这就是支付已知红利率资产的现货远期平价公式。公式(5.10)表明,支付已知收益率资产的远期价格等于按无风险利率与已知收益率之差计算的现货价格在
20、T 时刻的终值,5.4 一般结论:远期合约的价值,在签署远期合约时刻,远期合约的价值为零。之后,随着现货价格的变动,合约价值也跟随着出现变动,这个变动可能为正也可能为负计算:对所有远期合约,远期合约多头的价值 f 有个一般结论:f=(F0-K)e-r(T-t)F0为按照当前条件计算的远期合约价格K为远期合约订立时双方约定的远期合约价格,5.5 远期和期货价格,(同期限的)远期和期货价格通常被认为是相等的。当无风险利率不确定时,这二者之间有细微的区别如果标的资产价格与利率之间存在显著的正相关关系,那么期货价格应高于远期价格这是因为当标的资产价格上升时,期货价格通常也会随之升高,期货合约的多头将因
21、每日结算制而立即获利,并可按高于平均利率的利率将所获利润进行再投资。,而当标的资产价格下跌时,期货合约的多头将因每日结算制而立即亏损,但是可按低于平均利率的利率从市场上融资以补充保证金。相比之下,远期合约的多头将不会因利率的变动而受到上述影响。在此情况下,期货多头比远期多头更具吸引力,期货价格自然就大于远期价格。相反,如果标的资产价格与利率之间是负相关关系,则远期价格高于相应的期货价格,远期价格和期货价格的差异幅度还取决于合约有效期的长短。当有效期只有几个月时,两者的差距通常很小。但是,欧洲美元期货:有效期可以为10年。此外,税收、交易费用、保证金的处理方式、违约风险、流动性等方面的因素或差异
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 金融 工程
链接地址:https://www.31ppt.com/p-5341332.html