晶体结构4.ppt
《晶体结构4.ppt》由会员分享,可在线阅读,更多相关《晶体结构4.ppt(31页珍藏版)》请在三一办公上搜索。
1、一.定义 二.倒易点阵和晶体点阵的关系 三.倒易点阵的物理意义 四.倒易点阵实例 五.布里渊区,参考:黄昆书 1.3 节;p175-179;Kittel 8版 2.3 节,1.4 倒格子和布里渊区(Reciprocal lattice;Brillouin zones),一.定义:假设 是一个晶体点阵的基矢,该点阵的 格矢为:原胞体积是:现在定义 3个新的基矢 构成一个新点阵:,位移矢量 就构成了上面点阵的倒易点阵,上面变换公式中出现的 因子,对于晶体学家来说并没有多大用处,但对于固体物理研究却带来了极大的方便。倒易点阵的概念是Ewald 1921年在处理晶体X射线衍射问题时首先引入的,对我们理
2、解衍射问题极有帮助,更是整个固体物理的核心概念。,(h,k,l 是整数。),二.倒易点阵和晶体点阵之间的关系:倒易点阵是从晶体点阵(以后简称正点阵)中定义出的,可以方便地证明它和正点阵之间有如下关系:,2.两个点阵的格矢之积是 的整数倍:3.两个点阵原胞体积之间的关系是:4.正点阵晶面族 与倒易点阵格矢 相互垂直,,1.两个点阵的基矢之间:,且有:,2.证明:,1.证明:根据矢量运算规则,从倒格矢定义即可说明。,3.证明见习题1.114.证明:先证明倒格矢 与正格子的晶面系 正交。如图所示,晶面系 中最靠近原点的晶面(ABC)在正格子基矢 的截距分别为:,于是:,同理 而且 都在(ABC)面上
3、,所以 与晶面系 正交。,晶面系的面间距就是原点到ABC面的距离,由于可以证明:,由此我们得出结论:倒易点阵的一个基矢是和正点阵晶格中的一族晶面相对应的,它的方向是该族晶面的法线方向,而它的大小是该族晶面面间距倒数的2倍。又因为倒易点阵基矢对应一个阵点,因而可以说:晶体点阵中的晶面取向和晶面面间距这 2 个参量在倒易点阵里只用一个点阵矢量(或说阵点)就能综合地表达出来。,上述第4点的图示。,5.正点阵和倒易点阵是互易的:由正点阵 给出倒易 点阵 现假定 为正点阵,则其 倒易点阵根据定义为:,利用三重矢积公式:可以得到:,又因为:所以:,同样可以证明:,三.倒易点阵(Reciprocal lat
4、tice)的物理意义:,倒易点阵的物理意义和在分析周期性结构和相应物性中作为基本工具的作用,需要我们在使用中逐步理解。当一个点阵具有位移矢量时,考虑到周期性特点,一个物理量在 r 点的数值 也应该具有周期性:两边做Fourier展开,有:显然:即:,既然 是正点阵的格矢,符合该关系的 就是倒易点阵的格矢。所以,同一物理量在正点阵中的表述和在倒易点阵中的表述之间服从Fourier变换关系。,实际上,晶体结构本身就是一个具有晶格周期性的物理量,所以也可以说:倒易点阵是晶体点阵的Fourier变换,晶体点阵则是倒易点阵的Fourier逆变换。因此,正格子的量纲是长度 L,称作坐标空间,倒格子的量纲是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 晶体结构
链接地址:https://www.31ppt.com/p-5326998.html