运筹学第7章 最大流问题(精简).ppt
《运筹学第7章 最大流问题(精简).ppt》由会员分享,可在线阅读,更多相关《运筹学第7章 最大流问题(精简).ppt(21页珍藏版)》请在三一办公上搜索。
1、最大流问题,给定一个有向图G(V,E),其中仅有一个点的入次为零称为发点(源),记为vs,仅有一个点的出次为零称为收点(汇),记为vt,其余点称为中间点。,基本概念,3,5,1,1,4,2,3,5,2,vs,v2,v1,v3,v4,vt,对于G中的每一条边(vi,vj),相应地给一个数cij(cij0),称为边(vi,vj)的容量。我们把这样的网络 G称为容量网络,记为G(V,E,C)。,网络上的流,是指定义在边集E上的函数ff(vi,vj),并称f(vi,vj)为边(vi,vj)上的流量,简记为fij。,3,1,5,2,1,0,1,0,4,1,2,2,3,1,5,2,2,1,vs,v2,v1
2、,v3,v4,vt,标示方式:每条边上标示两个数字,第一个是容量,第二是流量,可行流、可行流的流量、最大流。,可行流是指满足如下条件的流:,(1)容量限制条件:对G中每条边(vi,vj),有,(2)平衡条件:,对中间点,有:,(即中间点vi的物资输入量等于输出量),对收点vt与发点vs,有:,(即vs发出的物资总量等于vt接收的物资总量),W是网络的总流量。,可行流总是存在的,例如f=0就是一个流量为0的可行流。所谓最大流问题就是在容量网络中寻找流量最大的可行流。一个流f=fij,当fij=cij,则称f对边(vi,vj)是饱和的,否则称f对边(vi,vj)不饱和。对于不饱和的,其间隙为ij=
3、cij-fij最大流问题实际上是一个线性规划问题。但利用它与图的密切关系,可以利用图直观简便地求解。,给定容量网络G(V,E,C),若点集V被剖分为两个非空集合V1和V2,使 vsV1,vtV2,则把边集(V1,V2)称为(分离vs和vt的)割集。,显然,若把某一割集的边从网络中去掉,则从vs到vt便不存在路。所以,直观上说,割集是从vs到vt的必经之路。,3,5,1,1,4,2,3,5,2,vs,v2,v1,v3,v4,vt,vs,v1,v4,v3,vt,v2,边集(vs,v1),(v1,v3),(v2,v3),(v3,vt),(v4,vt)是G的割集。其顶点分别属于两个互补不相交的点集。去
4、掉这五条边,则图不连通,去掉这五条边中的任意1-4条,图仍然连通。,割集的容量(简称割量)最小割集,割集(V1,V2)中所有起点在V1,终点在V2的边的容量的和称为割集容量。例如下图中所示割集的容量为5,3,5,1,1,4,2,3,5,2,vs,v2,v1,v3,v4,vt,在容量网络的所有割集中,割集容量最小的割集称为最小割集(最小割)。,对于可行流ffij,我们把网络中使fijcij的边称为饱和边,使fij0的边称为非零流边。,设f是一个可行流,是从vs到vt的一条链,若满足前向边都是非饱和边,后向边都是都是非零流边,则称是(可行流f的)一条可增广链。,3,1,5,2,1,0,1,0,4,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 运筹学第7章 最大流问题精简 运筹学 最大 问题 精简

链接地址:https://www.31ppt.com/p-5319901.html