《建构CMMI知识地图.ppt》由会员分享,可在线阅读,更多相关《建构CMMI知识地图.ppt(74页珍藏版)》请在三一办公上搜索。
1、建構CMMI知識地圖,李健興長榮大學資訊管理系副教授兼資訊工程系籌備處主任2004/11/17,2,Outline,IntroductionThe Structure of OntologyOntology-based Knowledge Management SystemOntology ConstructionCMMI OntologyCMMI Assistant ToolsCMMI Ontology ExtractionFuture Works,Introduction,4,Ontology(知識地圖),The ontology is a collection of key concep
2、ts and their interrelationships collectively providing an abstract view of an application domain.An ontology is a formal,explicit specification of a shared conceptualization.ConceptualizationExplicitFormal,5,Ontology(知識地圖),Ontologyexplicit formal specifications of the terms in the domain and relatio
3、ns among them.An ontology contains a hierarchy of concepts within a domain and describes each concepts property through an attribute-value mechanism.Relations between concepts describe additional logical sentence.,6,Ontology(知識地圖),The main application areas of ontology technologyKnowledge management
4、Web commerceElectronic businessDatabase designNatural language processingMulti agent system,7,飛機,航空公司:班機號碼:時間:速度:價格:,交通資訊,台北台南,台北高雄,台北澎湖,自行開車,路線:時間:,火車,班次:車種:時間:速度:價格:,搭巴士,巴士公司:路線:時間:價格:,Example,搭船,船公司:路線:時間:價格:,Ontology Example,發佈、表示,導致、造成、帶來,氣象,影響,向、往,帶來、引進,氣象報導,氣象百科,天文,.,寒流,颱風,降雨,.,.,發生,導致,造成,提醒,
5、9,DAML+OIL format,10,Characteristics of Ontology,Formal SemanticsConsensus of termsMachine readable and processableModel of real worldDomain specific,11,Reasons to Develop Ontologies,To share common understanding of the structure of information among people or software agents.To enable reuse of doma
6、in knowledge.To make domain assumptions explicit.To separate domain knowledge from the operational knowledge.To analyze domain knowledge.,12,Process of Developing an Ontology,Developing an ontology includes:Determine the domain and scope of the ontology.Consider reusing existing ontologies.Enumerate
7、 important terms in the ontology.Define classes in the ontology and arrange the classes in a taxonomic(subclass-superclass)hierarchy.Define attribute and describe allowed values for these attribute.Fill in the values for attribute for instance.,13,Ontology Learning Process,The Structure of Ontology,
8、15,The three-layered object-oriented ontology,Domain,Category 1,Category 2,Category 3,Category k,Concepts Set,Association,Generalization,Aggregation,16,The four-layered Object-Oriented Ontology,17,The four-layered News Ontology(cont.),18,The four-layered News Ontology,發佈、表示,導致、造成、帶來,氣象,影響,向、往遠離、移動,帶
9、來、引進,氣象報導,氣象百科,天文,.,寒流,颱風,降雨,.,.,Relation,Association,表示、警告、評估,型態:預報人員、天氣圖,中央氣象局/氣象局,來襲、形成、登陸,編號:*(Neu)號中心位置::*(Nc)(Ncd)(Neu)(Nf)強度:輕度颱風型態:暴風圈,颱風,發生、襲擊、增加,降雨量*(Neu)公釐累積雨量*(Neu)公釐種類:大雨、陣雨、大雷雨、豪雨、豪大雨型態:雨量、打雷,降雨,移動、靠近、前進,方向:東方、南方 西北方、東 南方,移動方向,接近、影響、流動,型態:西南氣流、冷氣流,氣流,避風、休耕,型態:漁港、農田、農作物、魚貨量,農林漁牧業,呈現、滯留、
10、徘徊,區域:山區、平地、台灣、中部、東半部各縣市:台北市、台 南縣海域:東海、南海海岸:西海岸、沙岸,地區,來襲、形成、登陸,型態:水災、旱象、土石流、山崩、洪水、房屋 倒塌、河水暴 漲、落石、雷 擊、霜害,災害,增強為、逼近,型態:副熱帶高氣 壓、熱帶性 低氣壓,氣壓,發生,導致,造成,注意、受困,型態:人數,民眾/人民,提醒,根據、開始,型態:最近、昨日 今日、白天 午後,時間,影響,恢復,出現、發生,19,Fuzzy Ontology(cont.),Domain,Category 2,C:ConceptA:AttributeO:Operation,Category 1,Category
11、3,Category k,Class-layer,C1;C1E1,C1E2,C1Ep,AC11,AC12,AC1q1,Cm;CmE1,CmE2,CmEp,ACm1,ACm2,ACmqm,OCm1,OCm1,OCmqm,C2;C2E1,C2E2,C2Ep,AC21,AC22,AC2q2,C3;C3E1,C3E2,C3Ep,AC31,AC32,AC3q3,C4;C4E1,C4E2,C4Ep,AC41,AC42,AC4q4,OC41,OC41,OC4q4,C5;C5E1,C5E2,C5Ep,AC51,AC52,AC5q5,OC51,OC51,OC5q5,Association,Event E1,Ev
12、ent E2,Event E3,Event Ep,OC11,OC11,OC1q1,OC21,OC21,OC2q2,OC31,OC31,OC3q3,LBR,LNR,20,Fuzzy Ontology,Ontology-based Knowledge Management System,22,CREDIT Research Center,Located at National Cheng Kung University.Supported by Walsin Lihwa Group.(2001-2004)Contain three main research groups.More than 10
13、 professors and 50 Ph.D or master students.,23,CREDIT KM System(cont.),Process ManagementWorkflow BPM+Web serviceCMMI(中小企業)Mobile WorkflowDocument ManagementKnowledge MapQ and AFAQPersonalizationSemantic SearchKnowledge Update,24,CREDIT KM System,Meeting ManagementMeeting SchedulingMeeting Notificat
14、ionMeeting Follow-upMessage ManagementBBSNotificationDirectory Service for Message Delivery,26,Semantic Search Service(cont.),Human-readableHTMLMachine-readableXMLMachine-understandableSemantic Web with Ontology(RDF,DAML+OIL),27,Semantic Search Service,Keyword-based searchSingle-word queryContext qu
15、eryBoolean queryConceptual searchConceptual queryNatural language querySemantic searchOntology-reasoning query,28,Why Semantic Search?,Mass information make user confused,current search engines are not good enough.(e.g.腦科 v.s.電腦科學)Quality is more important than QuantitySearch by what they means not
16、just what they sayThe user who has no idea about domain terminologies cant find information easily.,XML fileRepository,Index Repository,PersonalThesaurusRepository,OntologyRepository,CKIPRepository,Repository,InformationRetrievalAgent,Indexing and Gathering statistics,Natural LanguageProcessing,Quer
17、y,Query Inference,Query Personalization,Query Results,End User,Parsing and Transforming formats,Clustering,Document Preprocessing,Query processing,Semantic Search Service Architecture,30,Personalized Service,Make a specific information service that can adapt to the behavior of each user.Provide a me
18、chanism that can observe and analyze the browsing behavior of each user.Produce a structure with personal custom and preferences for other services using.,Personal Ontology,32,User Behavior Analysis,In order to find out users favor tendency,the first job is analyzing the habitual behavior of reading
19、.Consider two features:reading time and reading frequency.Consider reading time is related with content length,change the feature to,Personal Ontology,34,Question&Answer System,Question analysis5W1Hwhat,who,when,where,why,and how.Indirectly question&otherYesNo questionetc.Answer analysisQuestion typ
20、e5W1HDomainDomain knowledge,Question&Answer System,36,Question&Answer Knowledge Base(cont.),Domain ontologyObject-oriented ontology Question ontologyThe knowledge of question domainTo Classify and extract questionAnswer ontologyThe knowledge map of Q&A knowledge base,37,Question&Answer Knowledge Bas
21、e,Alternation RuleMorphological Lexical Semantic Ontology supervisionOntology managementOntology inference,Internet,e-News,RetrievalAgent,Fuzzy InferenceAgent,Chinese e-News Summary,Chinese e-NewsOntology,Chinesee-News SummaryRepository,Real-time e-NewsRepository,e-News Repository,GUI,POS Tagger(CKI
22、P),Chinese Term Filter,Document Processing Agent,OFEE Agent,Extracted-EventOntology,Notebook,Event Ontology Filter,SentenceRule Base,Sentence GenerationAgent,Summarization Agent,Document Abstraction Service,Meeting Scheduling Service,Meeting Host,Meeting SchedulingDecision Support System(MSDSS),Grou
23、p CalendarData Base(GCDB),Genetic LearningAgent(GLA),Fuzzy Inference Agent(FIA),MeetingInformationKnowledgeBase(MIKB),PersonalizedKnowledgeBase(PKB),EvaluationModule,Meeting NegotiationAgent(MNA),user names,proper timewithwork priority,Invitees Devices,Cell Phone,PDA,Notebook,Desk Computer,IFA,40,Th
24、e Architecture of Fuzzy Inference Agent,41,The Flow Chart of Genetic Learning Agent,Workflow Service,Ontology Construction,44,Automatic Construction of OO Ontology,Use object-oriented data model to represent ontologies.Follow object-oriented analysis procedure to build ontologies.Apply natural langu
25、age processing technology to extract key terms from documents.,45,Automatic Construction of OO Ontology,Apply SOM clustering technology to find concepts and instances.Apply data mining technology and morphological analysis to extract attributes,operations,and associations of instances.Aggregate attr
26、ibutes,operations,and associations of instances to class.,46,Structure of Object-Oriented Ontology,47,Concepts Class and Instance,Specific Class News Documents(Training Data),Part-of-speechTagger(CKIP),Nouns Set,Verbs Set,Chinese ElectronicDictionary,SegmentationStandard Dictionary,Academia Sinica B
27、alanced Corpus,Term Analyzer,Data Mining,Concepts Clustering Processing,Association RuleResult,Chinese ElectronicDictionary,Academia Sinica Balanced Corpus,ConceptsConstruction Agent,OperationsConstruction Agent,AttributesConstruction Agent,RelationsConstruction Agent,Ontology Construction Procedure
28、,Domain Ontology,Concepts Set,Domain Ontology Construction(I),RefiningTagging,Stop Word Filter,Domain Ontology Construction(II),Episodes,DocumentPre-processing,DomainOntology,Nouns,Sentences,Concepts,Concept Clustering,Episode Extraction,Attributes,Operations,Associations Extraction,ChineseDictionar
29、y,Feature Term Pre-processor,Episode Net Extractor,EpisodeExtractor,ConceptExtractor,Attributes-Operation-Association Extractor,Chinese Domain Ontology,Ontology Construction Agent,Domain Term Combination Processor,Knowledge Base,Part-Of-Speech Tagger,Data Flow,ChineseDocuments,Control Flow,Domain Ex
30、pert,Domain Ontology Construction(III),51,Episode Extractor(cont.),An episode is a partially ordered collection of events occurring together.,52,德國門將卡恩贏得本屆世足賽代表最佳球員的金球獎。,德國(Nc)門將(Na)卡恩(Nb)贏得(VJ)本(Nes)屆(Nf)世足賽(Nb)代表(Na)最佳(A)球員(Na)的(DE)金球獎(Nb)。(PERIODCATEGORY),(德國,Nc,1)(門將,Na,2)(卡恩,Nb,3)(贏得,VJ,4)(世足賽,
31、Nb,5)(代表,Na,6)(球員,Na,7)(金球獎,Nb,8),德國(Nc)_門將(Na)_卡恩(Nb)Germany_keeper_Oliver Kahn卡恩(Nb)_贏得(VJ)_金球獎(Nb)Oliver Kahn_took_Golden Ball,POS Tagger,Stop Word Filter,Episode Extractor,Episode Extractor,The following shows an example of extraction of episode from a sentence.,CMMI Ontology,54,The definition o
32、f CMMI,The CMMI,Capability Maturity Model Integrated,is a model for improving organizations processes and ability to manage the development,acquisition,and maintenance of products of services.,55,Maturity Level 2,Process Area 1(Requirement Management),Process Area 2(Project Planning),Process Area 3(
33、Project Monitoring and Control),Process Area 4(Supplier Agreement Management),Process Area 5(Measurement and Analysis),Process Area 6(Process and Product Quality Assurance),Process Area 7(Configuration Management),Maturity Level 2,57,CMMI Level 2 Ontology,進度監控記錄表,階段:String工作項目名稱:String預計完成日期:String實
34、驗完成日期:String完成百分比:Integer未完成理由:String,度量分析報告,各表單參數之輸入:String度量分析後結果:String,工作產品與工作項目清單,工作產品編號:String工作產品名稱:String工作項目編號:String工作項目名稱:String數量:String工作產品製作:String估計項目/估計值:String負責人:String,完成百分比,工作項目名稱,工作項目名稱,58,Specific Practice Form,進行進度審查SP1.6,59,Semantic CMMI Ontology(cont.),Domain,C:ConceptA:Attr
35、ibute,Category 1,Class-layer,Category 2,Category n,C2,AC21:VC211,VC212,VC21R1AC22:VC221,VC222,VC22R2AC2K1:VC2K11,VC2K12,VC2K1RK1,62,Document Management for CMMI,Ontology,Repository,Document,Repository,流程管理中心,1.P3,自動會議排程,1.S1,訊息管理中心,1.P5,支援CMMI Level 2認證之文件管理平台,Administrator,End User,Edit,差異分析工具,1.P1
36、,專案管理中心,1.P2,全文檢索,1.S3,文件管理中心,1.P4,問答知識庫,1.S2,度量分析工具,1.S4,企業組織的表單,63,Find Measurement and Analysis Service,PFA-WS,WSDL,WSDL,WSDL,WSDL,Project PlanningOntologyRepository,Project MonitorOntology Repository,Supplier AgreementManagementOntology Repository,Process and Product Quality AssuranceOntology Re
37、pository,Basic Web Services,Composite Services,Measurement&Analysis data,SOAP,Composed of,ODBC,Web Client,PPMA-WS,PSPA-WS,PBMA-WS,PCAA-WS,SSS-WS,WPQAS,PFA-WS,PCAA-WS,PFA-WS,WPQA-WS,PBMA-WS,PSPA-WS,PCAA-WS,SSS-WS,WPQA-WS,Measurement&Analysis,64,Monitor,Project,Repository,Monitor Supplier,Agreement Ma
38、nagement,Repository,Basic Web Services,UDDI,PPMS,PRMS,PCAMS,PSIMS,SPMS,PDQMS,PCQMS,Process and Product,Quality Assurance,Repository,PSIMS,PPMS,SPMS,PRMS,PDQMS,PCAMS,PCQMS,SPMS,PPMS,PRMS,PPMS,PCQMS,UDDI,Web,Client,Composite,Services,WSDL,Service,Registry,WSDL,WSDL,SOAP,Composed of,Project Monitor Ser
39、vice,Supplier Agreement,Management Monitor Service,Process and Product,Quality Monitor Service,JDBC,Find Project Monitor,and Control Service,Project Monitor,and Control,Data,Project Monitor&Control,CMMI Assistant Tools,66,CMMI Assistant Tools with SIM,The purpose of CMMI Assistant Tools is to provid
40、e computation support for improving processes of software organization and managing the development,acquisition,and maintenance of products or services.,67,Architecture of CASIM,Project Lifecycle,RequirementSpecifications,Project ManagementPlan(Estimations,Quality plan,Risk Management plan),Status R
41、eportfor the Week Ending,Milestone Analysis Report,NoncomplianceReport,Project ClosureReport,RequirementEditor&Management(RD&REQM)Service,Project PlanningService,Schedulingtool,Meetingtool,ProjectQualityGoal(PPQA)Generator,ProjectTrackingTool,Monitor and ControlStatusReport,Task&IssueTrackingTool,Pr
42、oject ClosureAnalysisService,RequirementSpecificationsTemplate,EstimationCriteria,Effort DataTemplate,SoftwareMetrics,HistoricalDataTemplate,Risk ManagementPlan Template,Project ManagementPlan Template,StatusReportTemplate,MilestoneAnalysisTemplate,Audit ChecklistTemplate,ClosureAnalysisReportTempla
43、te,69,Architecture of RD Service,70,Architecture of REQM Service,71,CMMI Ontology Extraction,72,CMMI Ontology Extraction,Domain Expert,CMMICorpus,MeaningfulTerms,Concept Set,FuzzyInferenceMechanism,DocumentPreprocessingMechanism,ChineseCMMIDictionary,TermClassifier,ClassifiedMeaningfulTerm Set,Sentence PathExtractor,Sentence Generator,SentenceFilter,CMMIKnowledgeRepository,73,Future Works,Construct CMMI Ontology.Construct CMMI-based Knowledge Management System.Apply CMMI-based Knowledge Management System to Collaborative Research Projects.,74,Q&A,
链接地址:https://www.31ppt.com/p-5319582.html