结构实体中钢筋保护层厚度检测.ppt
《结构实体中钢筋保护层厚度检测.ppt》由会员分享,可在线阅读,更多相关《结构实体中钢筋保护层厚度检测.ppt(109页珍藏版)》请在三一办公上搜索。
1、结构实体中钢筋保护层厚度检测,贵州建筑科学研究检测中心,项目,检测依据:1.混凝土结构施工质量验收规范(GB50204-2002)(2011)2.混凝土中钢筋检测技术规程(JGJ/T152-2008)3.原设计图纸混凝土内部钢筋保护层厚度为混凝土表面与钢筋表面间的最小距离,贵州建筑科学研究检测中心,1、检验的结构部位及数量,检验的结构部位和构件数量,应符合以下要求:(1)检验的结构部位应由监理(建设)、施工等各方根据结构构件的重要性共同选定;(2)对梁类、板类构件,应各抽取构件数量的2%且不少于5个构件进行检验;当有悬挑构件时,抽取的构件中悬挑梁类、板类构件所占比例均不宜小于50%。,贵州建筑
2、科学研究检测中心,2、选定构件的检验部位及数量,(1)对选定的梁类构件,应对全部纵向受力钢筋的保护层厚度进行检验;(2)对选定的板类构件,应抽取不少于6根纵向受力钢筋的保护层厚度进行检验;对于单向板,应沿两受力边检测负弯矩钢筋;对于常见的双向板,应沿两长边检测负弯矩钢筋;检测位置尽量靠近钢筋根部,并且在两长边中间1/2范围检测。(3)对每根钢筋,应在有代表性的部位测量1点。,贵州建筑科学研究检测中心,贵州建筑科学研究检测中心,3、检验方法,可采用非破损或局部破损的方法,也可采用非破损方法并用局部破损的方法进行校准。检验误差:不得大于1mm(1mm)。(1)检测面要求:选择适当的检测面,检测面应
3、平整、清洁,并应避开金属预埋件。对于具有装饰面层的结构及构件,应清除装饰面层后在混凝土面上进行检测。(2)钻孔、剔凿时,不得损坏钢筋,实测应采用游标卡尺,量测精度应为0.1mm。,贵州建筑科学研究检测中心,4、检验技术(钢筋探测仪),检测前准备:(1)检测前,应对钢筋探测仪进行预热和调零,调零时探头应远离金属物体。在检测过程中,应核查钢筋探测仪的零点状态。(2)宜结合设计资料了解钢筋布置情况,检测时应避开钢筋接头和绑丝;更重要的是要设定好被检测钢筋的直径,否则偏差很大。,贵州建筑科学研究检测中心,4、检验技术(钢筋探测仪),检测步骤:(1)钢筋位置确定:探头在检测面上移动,直到钢筋探测仪保护层
4、厚度示值最小,此时探头中心线与钢筋轴线应重合,在相应位置做好标记。按上述步骤将相邻的其他钢筋位置逐一标出。,贵州建筑科学研究检测中心,4、检验技术(钢筋探测仪),检测步骤:(2)保护层厚度检测:首先设定好被检测钢筋的直径,沿被测钢筋轴线选择相邻钢筋影响较小的位置,并应避开钢筋接头和绑丝,读取第1次检测的混凝土保护层厚度检测值。在被测钢筋的同一位置重复检测1次,读取第2次检测的混凝土保护层厚度检测值。当同一处读取的2个混凝土保护层厚度检测值相差大于1mm时,该组检测数据无效,并查明原因,在该处应重新进行检测。仍不满足要求时,应更换钢筋探测仪或采用钻孔、剔凿的方法进行验证。,贵州建筑科学研究检测中
5、心,4、检验技术(钢筋探测仪),检测步骤:(3)特殊情况1:当实际混凝土保护层厚度小于钢筋探测仪最小示值时,应采用在探头下附加垫块的方法进行检测。垫块对钢筋探测仪检测结果不应产生干扰,表面应光滑、平整,其各方向厚度偏差值不应大于0.1mm。所加垫块厚度在计算时应予扣除。,贵州建筑科学研究检测中心,4、检验技术(钢筋探测仪),检测步骤:(3)特殊情况2:遇到下列情况之一时,应选取不少于30%的已测钢筋,且不少于6处(实际检测数量不足6处时应全部选取),采用剔凿、钻孔等方法验证。1、认为相邻钢筋对检测结果有影响;2、钢筋公称直径未知或有异议;3、钢筋实际根数、位置与设计有较大偏差;4、钢筋及混凝土
6、材质与校准试件有显著差异。,贵州建筑科学研究检测中心,5、检测数据处理,钢筋的混凝土保护层厚度平均检测值应按下式计算:式中 第i 测点平均检测值,精确至1mm;第1、2次检测值,精确至1mm;保护层厚度修正值,为同一规格钢 筋的保护层厚度实测验证值减去检 测值,精确至0.1mm;探头垫块厚度,无垫块时为0,精确 至0.1mm。,贵州建筑科学研究检测中心,6、检测结论,A.纵向受力钢筋的允许误差:梁类构件:+10mm,-7mm板类构件:+8mm,-5mm,贵州建筑科学研究检测中心,6、检测结论,B.对梁类、板类构件应分别进行验收,合格标准如下:1、当全部钢筋的保护层厚度检验的合格率为90%及以上
7、时,钢筋的保护层厚度检验结果应判定为合格。2、当全部钢筋的保护层厚度检验的合格率小于90%但不小于80%时,可抽取相同数量的构件进行检验;当按两次抽样总和计算的合格率为90%及以上时,钢筋的保护层厚度检验结果仍判定为合格。3、每次抽样检测结果中不合格点的最大偏差均不应大于允许偏差的1.5倍。,第2.1节 钢结构对材料的要求,1.概述2.钢结构对材料的基本要求,了解钢结构对材料性能的基本要求,本节目录,基本要求,2.1.1 概述,含碳量小于2的铁碳合金称作钢,含碳量大于2时称作铁。钢材种类繁多,性能差别很大,适用于钢结构只是其中一小部分。,(1)较高的抗拉强度 fu和屈服点 fy;fy是衡量结构
8、承载力的指标,fy高则可减轻结构自重,节约钢材和降低造价。fu是衡量钢材经过较大变形后的抗拉能力,它直接反映钢材内部组织的优劣,同时fu 高可以增加结构的安全保障。(2)较好的塑性、韧性;(3)良好的工艺性能(冷、热加工,可焊性);(4)对环境的良好适应性(低温、高温、腐蚀等)。,2.1.2 钢结构对材料的基本要求,第2.2节 钢材的破坏形式,钢材的两种破坏形式,了解钢材的破坏形式和特点,本节目录,基本要求,2.2.1 钢材的两种破坏形式,第2.3节 钢材的主要性能,1.受拉、受压及受剪时的性能2.冷弯性能3.冲击韧性,掌握钢材的主要力学性能要求及含义,本节目录,基本要求,2.3.1 受拉、受
9、压及受剪时的性能,1、钢材在单向一次拉伸下的工作性能,试验条件:标准试件(GB/T228),常温(205)下缓慢加载,一次完成。含碳量为0.1%0.3%。标准试件:Lo/d=5或10;Lo-标距;d-直径,图2.3.1,2、有明显屈服点钢材的-曲线,2、有明显屈服点钢材的-曲线,图2.3.3,可划分为以下五个阶段:,(1)弹性阶段(OB(OE)段),OA(OP)段材料处于纯弹性,即:,AB(PE)段有一定的塑性变形,但整个OB(OE)段卸载时=0,弹性模量:E=206103N/mm2,其中,A(P)点应力 f p称为比例极限。,(2)弹塑性阶段(BC(ES)段),该段很短,表现出钢材的非弹性性
10、质,即卸荷留下永久的残余变形。,(3)塑性阶段(CD(SC)段),该段基本保持不变(水平),急剧增大,称为屈服台阶。变形模量E=0。,该段应力最高点和最低点分别称为上屈服点和下屈服点,下屈服点比较稳定,设计中则以下屈服点为依据。f y称为屈服点。,(4)强化阶段(DG(CB)段),当应力达到G(B)点时,出现颈缩现象,至H(D)点而断裂。,随荷载的增加,缓慢增大,但增加较快。曲线最高点处G(C)点的应力 fu称为抗拉强度或极限强度。,(5)颈缩破坏阶段(GH(BD)段),3、应力应变曲线的简化,设计时将钢材简化为理想弹塑性体,钢材在静载作用下:强度计算以屈服点的应力fy为依据,抗拉强度fu为材
11、料的安全储备。,4、对无明显屈服点的钢材,高强度钢材在拉伸过程中没有明显的屈服台阶,塑性变形小,设计中不宜利用它的塑性。,设计时取相当于残余变形为0.2%时所对应的应力作为屈服点称为条件屈服点或名义屈服点f0.2。,5、单向拉伸时钢材的机械性能指标,(1)屈服点 fy 应力应变曲线开始产生塑性流动时对应的应力,它是衡量钢材的承载能力和确定钢材强度设计值的重要指标。,(2)抗拉强度 fu 应力应变曲线最高点对应的应力,它是钢材最大的抗拉强度。,(3)伸长率,当lo/d=5时,用5表示当l0/d=10时,用10表示,(5 10),实际工程中以伸长率代表材料断裂前具有的塑性变形能力。钢材的塑性是指:
12、当应力超过屈服点后,钢材能产生显著的残余变形(塑性变形)而不立即断裂的性质。,试件断裂时的绝对变形值与原标距长度的百分比,用表示。,(4)断面收缩率是指试件拉断后,颈缩区的断面面积缩小值与原断面面积比值的百分比,用表示。,式中:A0 试件原来的断面面积 A1 试件拉断后颈缩区的断面面积,图2.3.6,采用短试件l0/d=3,屈服点同单向拉伸时的屈服点。,6、受压时的性能,7、受剪时的性能,抗剪强度可由折算应力计算公式得到:,剪变模量,2.3.2 冷弯性能,冷弯性能是判别钢材塑性变形能力和冶金质量的综合指标,鉴定合格指标:通过冷弯冲头加压,当试件弯曲至180时,检查试件弯曲部分的外面、里面和侧面
13、,如果没有裂纹、断裂或分层,即认为试件冷弯性能合格。,图2.3.7,2.3.3 冲击韧性,冲击韧性钢材在塑性变形和断裂过程中吸收能量的能力。,用断裂时吸收的总能量(弹性和非弹性能)来表示。韧性指标用冲击韧性值表示,冲击韧性也叫冲击功,用符号Wkv或Cv表示,单位为J。,冲击韧性由冲击韧性试验确定。,图2.3.8,图2.3.9 冲击韧性演示,影响冲击韧性的因素:,冲击韧性与试件刻槽有关,常用缺口形式为夏氏V型和梅氏U型,近年来,我国冲击试验已用夏氏V型代替梅氏U型。,冲击韧性还与试验的温度有关。根据温度不同,我国钢材标准中将试验分为四档,即+20,0,-20和-40时的冲击韧性。温度越低,冲击韧
14、性越低。,钢材的机械性能指标,屈服点 fy抗拉强度 fu伸长率 冷弯试验冲击韧性 Cv,小结,第2.4节 各种因素对钢材主要性能的影响,1.化学成分2.冶金缺陷3.钢材硬化,1.了解影响钢材性能的主要因素,本节目录,基本要求,2.了解防止脆性断裂破坏的方法,4.温度影响5.应力集中6.荷载的影响,2.4.1 化学成分,普通碳素钢中Fe占99%,C和其他元素仅占1%,但对钢材力学性能有着决定性的影响。普通低合金钢中合金元素小于5%。,(1)碳(C):钢材强度的主要来源,随其含量增加,强度增加,塑性、韧性和疲劳强度降低,同时恶化钢的焊接性能和抗腐蚀性。钢结构用钢中,碳含量一般控制在0.22%以下,
15、当其含量在0.2以下时,可焊性良好。,(2)硫(S):有害元素,热脆性。不得超过0.045%。(3)磷(P):有害元素,冷脆性。抗腐蚀能力略有提高,可焊性降低。不得超过0.045%。(4)锰(Mn):合金元素,弱脱氧剂。与S形成MnS,熔点1600,可以消除一部分S的有害作用。(5)硅(Si):合金元素。强脱氧剂。,(6)钒(V):合金元素。细化晶粒,提高强度,其碳化物具有高温稳定性,适用于受荷较大的焊接结构。(7)氧(O):有害杂质,与S相似(热脆)。(8)氮(N):有害杂质,与P相似(冷脆)。(9)铜(Cu):提高抗锈蚀性,提高强度,对可焊性有影响。,2.4.2 冶金缺陷,常见的冶金缺陷有
16、:偏析:钢中化学成分不一致和不均匀性称为偏析。主要是硫和磷的偏析,使钢材的塑性、韧性及可焊性变坏。非金属夹杂:常见的夹杂物为硫化物和氧化物。硫化物使钢材在800 1200高温下变脆,氧化物会降低钢材的力学性能和工艺性能。气孔:浇注时由FeO与C作用所生成的CO气体不能充分逸出而留在钢锭内形成的。裂纹:钢材中已出现的局部破坏 分层:指沿厚度方向形成层间并不相互脱离的分层。分层处易被锈蚀,且分层使钢材性能变差。,2.4.3 钢材硬化,冷作硬化在冷加工或一次加载使钢材产生较大的塑性变形的情况下,卸载后再重新加载,钢材的屈服点提高,塑性和韧性降低的现象。,时效硬化随着时间的增加,纯铁体中有一些数量极少
17、的碳和氮的固熔物质析出,使钢材的屈服点和抗拉强度提高,塑性和韧性下降的现象。,应变时效硬化钢材产生一定数量的塑性变形后,铁素体晶体中的固溶碳和氮更容易析出,从而使已经冷作硬化的钢材又发生时效硬化现象。,图2.4.3,注意:不管哪一种硬化,都要降低钢材的塑性和韧性,对钢材不利。因此钢结构设计中一般不利用硬化后提高的强度,而且对于直接承受动荷载的结构还应设法消除硬化的影响。例如,经过剪切机剪切的钢板,为了消除剪切边缘的冷作硬化,可采用火焰烧烤使之“退火”或将边缘刨去35mm。,2.4.4 温度影响,1正温范围,200以内对钢材性能无大影响,该范围内随温度升高总的趋势是强度、弹性模量降低,塑性增大。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 结构 实体 钢筋 保护层 厚度 检测

链接地址:https://www.31ppt.com/p-5299301.html