交流调速系统第2章.ppt
《交流调速系统第2章.ppt》由会员分享,可在线阅读,更多相关《交流调速系统第2章.ppt(51页珍藏版)》请在三一办公上搜索。
1、第2章 基于动态模型按转子磁链定向的矢量控制系统,本节提要矢量控制系统的基本思路按转子磁链定向的矢量控制方程及其解耦作用转子磁链模型转速、磁链闭环控制的矢量控制系统直接矢量控制系统磁链开环转差型矢量控制系统间接矢量控制系统,概 述,上一节中表明,异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,通过坐标变换,可以使之降阶并化简,但并没有改变其非线性、多变量的本质。需要高动态性能的异步电机调速系统必须在其动态模型的基础上进行分析和设计,但要完成这一任务并非易事。经过多年的潜心研究和实践,有几种控制方案已经获得了成功的应用,目前应用最广的就是按转子磁链定向的矢量控制系统。,2.1 矢量
2、控制系统的基本思路,在上一章已经阐明,以产生同样的旋转磁动势为准则,在三相坐标系上的定子交流电流 iA、iB、iC,通过三相/两相变换可以等效成两相静止坐标系上的交流电流 i、i,再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流 im 和 it。,如果观察者站到铁心上与坐标系一起旋转,他所看到的便是一台直流电机,可以控制使交流电机的转子总磁通 r 就是等效直流电机的磁通,则M绕组相当于直流电机的励磁绕组,im 相当于励磁电流,T 绕组相当于伪静止的电枢绕组,it 相当于与转矩成正比的电枢电流。,把上述等效关系用结构图的形式画出来,便得到下图。从整体上看,输入为A,B,C三相电压,输出为
3、转速,是一台异步电机。从内部看,经过3/2变换和同步旋转变换,变成一台由 im 和 it 输入,由 输出的直流电机。,图6-52 异步电动机的坐标变换结构图3/2三相/两相变换;VR同步旋转变换;M轴与轴(A轴)的夹角,3/2,VR,等效直流电动机模型,A,B,C,iA,iB,iC,it,im,i,i,异步电动机,异步电机的坐标变换结构图,既然异步电机经过坐标变换可以等效成直流电机,那么,模仿直流电机的控制策略,得到直流电机的控制量,经过相应的坐标反变换,就能够控制异步电机了。由于进行坐标变换的是电流(代表磁动势)的空间矢量,所以这样通过坐标变换实现的控制系统就叫作矢量控制系统(Vector
4、Control System),控制系统的原理结构如下图所示。,矢量控制系统原理结构图,图6-53 矢量控制系统原理结构图,在设计矢量控制系统时,可以认为,在控制器后面引入的反旋转变换器VR-1与电机内部的旋转变换环节VR抵消,2/3变换器与电机内部的3/2变换环节抵消,如果再忽略变频器中可能产生的滞后,则图6-53中虚线框内的部分可以完全删去,剩下的就是直流调速系统了。,设计控制器时省略后的部分,可以想象,这样的矢量控制交流变压变频调速系统在静、动态性能上完全能够与直流调速系统相媲美。,2.2 按转子磁链定向的矢量控制方程及其 解耦作用,问题的提出 上述只是矢量控制的基本思路,其中的矢量变换
5、包括三相/两相变换和同步旋转变换。在进行两相同步旋转坐标变换时,只规定了d,q两轴的相互垂直关系和与定子频率同步的旋转速度,并未规定两轴与电机旋转磁场的相对位置,对此是有选择余地的。,按转子磁链定向,现在d轴是沿着转子总磁链矢量的方向,并称之为 M(Magnetization)轴,而 q 轴再逆时针转90,即垂直于转子总磁链矢量,称之为 T(Torque)轴。这样的两相同步旋转坐标系就具体规定为 M,T 坐标系,即按转子磁链定向(Field Orientation)的坐标系。,当两相同步旋转坐标系按转子磁链定向时,应有,(8-1),按转子磁链定向后的系统模型,代入转矩方程式(7-41)和状态方
6、程式(7-42)(7-46)并用m,t替代d,q,即得,(8-2),(8-3),(8-4),(8-5),(8-6),(8-7),由于,状态方程中的式(8-5)蜕化为代数方程,整理后得转差公式,(8-8),这使状态方程降低了一阶。,由式(8-4)可得,(8-9),(8-10),按转子磁链定向的意义,式(8-9)或式(8-10)表明,转子磁链仅由定子电流励磁分量产生,与转矩分量无关,从这个意义上看,定子电流的励磁分量与转矩分量是解耦的。式(8-9)还表明,r 与 ism之间的传递函数是一阶惯性环节,时间常数为转子磁链励磁时间常数。,式(8-9)或(8-10)、(8-8)和(8-2)构成矢量控制基本
7、方程式,按照这些关系可将异步电机的数学模型绘成图6-54中的形式,图中前述的等效直流电机模型(见图6-52)被分解成 和 r 两个子系统。可以看出,虽然通过矢量变换,将定子电流解耦成 ism 和 ist 两个分量,但是,从 和 r 两个子系统来看,由于Te同时受到 ist 和 r 的影响,两个子系统仍旧是耦合着的。,电流解耦数学模型的结构,图6-54 异步电动机矢量变换与电流解耦数学模型,按照图6-53的矢量控制系统原理结构图模仿直流调速系统进行控制时,可设置磁链调节器AR和转速调节器ASR分别控制r 和,如图6-55所示。为了使两个子系统完全解耦,除了坐标变换以外,还应设法抵消转子磁链r 对
8、电磁转矩 Te 的影响。,矢量控制系统原理结构图,比较直观的办法是,把ASR的输出信号除以r,当控制器的坐标反变换与电机中的坐标变换对消,且变频器的滞后作用可以忽略时,此处的(r)便可与电机模型中的(r)对消,两个子系统就完全解耦了。这时,带除法环节的矢量控制系统可以看成是两个独立的线性子系统,可以采用经典控制理论的单变量线性系统综合方法或相应的工程设计方法来设计两个调节器AR和ASR。,应该注意,在异步电机矢量变换模型中的转子磁链 r 和它的定向相位角 都是实际存在的,而用于控制器的这两个量都难以直接检测,只能采用观测值或模型计算值,在图6-55中冠以符号“”以示区别。,解耦条件,因此,两个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 交流 调速 系统
链接地址:https://www.31ppt.com/p-5295236.html