相似理论与模型试验PPT.ppt
《相似理论与模型试验PPT.ppt》由会员分享,可在线阅读,更多相关《相似理论与模型试验PPT.ppt(56页珍藏版)》请在三一办公上搜索。
1、,第二章结构相似理论,教学课程实验应力分析,哈尔滨工业大学土木工程学院2012年11月16日,2.1 概述,力学分析,理论计算,实验研究,原型试验,模型试验,模型试验是将发生在原型中的力学过程,在物理相似条件下,经缩小(或放大)后在模型上重演。对模型中的力学参数进行测量、记录、分析,并根据相似关系换算到原型中去,达到研究原型力学过程的目的。,模型试验,Akashi Kaikyo Bridge,Japan,明石头海峡大桥,日本,模型试验,模型试验,航空航天领域,UCSD-NEES 室外振动台实验,原型试验,日本,E-Defense振动系统,“足尺三维振动破坏实验设施”,模型试验的优点:经济性好模
2、型尺寸小针对性强突出主要因素,略去次要因素数据准确室内试验模型试验的应用:代替大型结构试验或作为大型结构试验的辅助试验。作为结构分析计算的辅助手段。验证和发展结构计算理论。模型试验的理论基础结构相似理论,2.2 模型的相似,物理量和物理现象的相似,2.物理现象相似是指除了几何相似之外,在进行物理过程的系统中,在相应的地点(位置)和对应的时刻,模型与原型的各相应物理量之间的比例应保持常数。,1.物理量相似 各种物理量,如几何,质量,力等。,在两个系统中,所有向量在对应点和对应时刻方向相同、大小成比例,所有标量也在对应点和对应时刻成比例,基本概念,2.2.2 物理量的相似1.几何相似要求模型与原型
3、结构之间所对应部分的尺寸成比例。几何尺寸之比称为几何相似常数。,对一矩形截面,模型和原型结构的面积相似常数、截面抵抗矩相似常数和惯性矩相似常数分别为,面积相似常数,截面抵抗矩相似常数,惯性矩相似常数相似常数,2.质量相似要求模型与原型结构对应部分质量成比例。质量之比称为质量相似常数。,对于具有分布质量部分,用质量密度表示。,质量密度相似常数,3.荷载相似要求模型与原型在各对应点所受的荷载方向一致,大小成比例。,集中荷载相似常数线荷载相似常数面荷载相似常数弯矩或扭矩相似常数,4.物理相似 要求模型与原型的各相应点的应力和应变、刚度和变形间的关系相似。,5.时间相似,时间相似常数,对于结构的动力问
4、题,在随时间变化的过程中,要求模型与原型在对应时刻进行比较,要求相对应的时间成比例。,6.边界条件相似 要求模型与原型在与外界接触的区域内的各种条件(支承条件、约束条件和边界上的受力情况等)保持相似。,7.初始条件相似动力问题 要求模型与原型在初始时刻的运动参数相似。初始几何位置、质点的位移、速度和加速度。模型上的速度、加速度和原型的速度和加速度在对应的位置和对应的时刻保持一定的比例,并且运动方向一致。,与原型结构构造相同的条件,2.3.结构相似定理,以牛顿第二定律为例来说明第一相似定理性质,对于原型:(1),如果模型与原型相似,则各对应物理量成比例:,对于模型(2),(3),2.3.1.第一
5、相似定理,将(3)代入(2),与(1)相比有:,称这一无量纲量为相似准数,也称相似判决,相似系统相似准数相同,无量纲值,相似指标,(4),将(3)代入(4),(4)式为判别模型与原型是否相似的条件,称为相似指标,若两个物理系统现象相似,则它们的相似指标为1。,去掉角标,写成一般形式:,已知系统相似,确定相似条件,第一相似定理:彼此相似的现象,以相似常数组成的受现象制约的相似指标等于1或相同文字组成的相似准数为一不变量。,相似常数:在两相似现象中,两个对应的物理量之比为常数。相似指标:由彼此相似现象中各相似常数组成的无量纲量,彼此相似的现象都满足相似指标等于1的条件。相似准数:在所有相似的现象中
6、是一个不变量,无量纲量,所有相似的系统相似准数应相等。,几个重要概念小结,2.3.2 方程分析法 利用描述现象的基本微分方程组导出相似准数(判据)。具体步骤:第一步:将方程对于原型写出,加角标 p;第二步:将方程对于模型写出,加角标 m;第三步:定义模型和原型同名物理量间的相似常数;第四步:将模型方程中各物理量以相似常数和原型中对应物理量表示。第五步:比较原型与模型方程,消去原型方程中的各物理量,即得到无量纲形式的相似指标和相应的相似准数(判据)。,例1:单自由度系统有阻尼受迫振动相似准数的导出。振动微分方程如下:,解:对于原型系统振动微分方程,对于模型系统振动微分方程,各物理量的相似常数为,
7、模型系统各物理量为,将上式代入模型系统,得:,与原型系统相比较,得:,由上式得,例2:一悬臂梁结构,在梁端作用一集中荷载 P,截面高 h,宽 b,求相似准数。,解:对于原型结构,在任意截面 a处弯矩、正应力和挠度为:,模型方程,将以上各式代入原型系统方程,,则相似系统的结构相似常数为,将上式并与模型系统相比较,得相似准数如下,由相似条件得到原型受力分布,例3:受均布载荷 q 作用的简支梁在截面 x 处的挠度、弯矩和正应力如下,求相似准数。,解:原型系统方程,相似系统的对应各物理量的相似常数为:,模型系统方程,将模型系统各物理量代入上式,模型系统各物理量为,整理得,则相似条件为,2.4.1.基本
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相似 理论 模型 试验 PPT
链接地址:https://www.31ppt.com/p-5292027.html