机械优化设计方法.ppt
《机械优化设计方法.ppt》由会员分享,可在线阅读,更多相关《机械优化设计方法.ppt(203页珍藏版)》请在三一办公上搜索。
1、机械优化设计方法,第一章:绪论,优化设计(Optimum Design)是60年代发展起来的一门新的设计方法,是最优化技术和计算技术在设计领域中应用的结果。,解析法,数值计算法,优化方法,微分求极值,迭代逼近最优值,计算机,优化设计,机械优化设计是使某项机械设计在规定的各种设计限制条件下,优选设计参数,使某项或几项设计指标获得最优值。,什么叫机械优化设计,工程设计上的“最优值”(Optimum)或“最佳值”系指在满足多种设计目标和约束条件下所获得的最令人满意和最适宜的值。,一、从传统设计到优化设计,机械设计一般需要经过调查研究(资料检索)、拟订方案(设计模型)、分析计算(论证方案)、绘图和编制
2、技术文件等一系列的工作过程。,图1-1 传统的机械设计过程,图13 机械优化设计过程框图,优化设计与传统设计相比,具有如下三个特点:,(1)设计的思想是最优设计;,(2)设计的方法是优化方法;,(3)设计的手段是计算机。,二、机械优化设计的发展概况,近几十年来,随着数学规划论和电子计算机的迅速发展而产生的,它首先在结构设计、化学工程、航空和造船等部门得到应用。,1.优化设计的应用领域,国内近年来才开始重视,但发展迅速,在机构综合、机械的通用零部件的设计、工艺设计方面都得到应用。,2.目前机械优化设计的应用领域,在机械设计方面的应用较晚,从国际范围来说,是在上世纪60年代后期才得到迅速发展的。,
3、优化设计本身存在的问题和某些发展趋势主要有以下几方面:,1)目前优化设计多数还局限在参数最优化这种数值量优化问题。结构型式的选择还需进一步研究解决。,2)优化设计这门新技术在传统产业中普及率还不高。,3)把优化设计与CAD、专家系统结合起来是优化设计发展的趋势之一。,三、本课程的主要内容,1.建立优化设计的数学模型,2.选择合适的优化方法,3.编制计算机程序,求得最佳设计参数,第一章 机械优化设计概述,第一节 应用实例 机械优化设计问题来源于生产实际。现在举典型实例来说明优化设计的基本问题。,图1-1所示的人字架由两个钢管构成,其顶点受外力2F=3 N。人字架的跨度2B=152cm,钢管壁厚T
4、=0.25cm,钢管材料的弹性模量E=2.1 Mpa,材料密度=7.8/,许用压应力=420MPa。求在钢管压应力不超过许用压应力 和失稳临界应力 的条件下,人字架的高h和钢管平均直径D,使钢管总质量m为最小。,图2-2 人字架的受力,人字架的优化设计问题归结为:,使结构质量,但应满足强度约束条件,稳定约束条件,钢管所受的压力,失稳的临界力,钢管所受的压应力,钢管的临界应力,强度约束条件,可以写成,稳定约束条件,可以写成,人字架的总质量,这个优化问题是以D和h为设计变量的二维问题,且只有两个约束条件,可以用解析法求解。,除了解析法外,还可以采用作图法求解。,1-3人字架优化设计的图解,第三节优
5、化设计问题的数学模型,一、设计变量,在优化设计的过程中,不断进行修改、调整,一直处于变化的参数称为设计变量。,设计变量的全体实际上是一组变量,可用一个列向量表示:,图2-4 设计空间,二、约束条件,一个可行设计必须满足某些设计限制条件,这些限制条件称作约束条件,简称约束。,约束,性能约束,侧面约束,针对性能要求,只对设计变量的取值范围限制(又称边界约束),(按性质分),按数学表达形式分:,约束,等式约束,不等式约束,可行域:凡满足所有约束条件的设计点,它在设计空间的活动范围。,一般情况下,其设计可行域可表示为:,图2-5 二维问题的可行域,三、目标函数,目标函数是设计变量的函数,是设计中所追求
6、的目标。如:轴的质量,弹簧的体积,齿轮的承载能力等。,在优化设计中,用目标函数的大小来衡量设计方案的优劣,故目标函数也可称评价函数。,目标函数的一般表示式为:,优化设计的目的就是要求所选择的设计变量使目标函数达到最佳值,即使,通常,目标函数,单目标设计问题,多目标设计问题,目前处理多目标设计问题的方法是组合成一个复合的目标函数,如采用线性加权的形式,即,四、优化问题的数学模型,优化设计的数学模型是对优化设计问题的数学抽象。,优化设计问题的一般数学表达式为:,数学模型的分类:,(1)按数学模型中设计变量和参数的性质分:,确定型模型,随机型模型,设计变量和参数取值确定,设计变量和参数取值随机,(2
7、)按目标函数和约束函数的性质分:,a.目标函数和约束函数都是设计变量的线形函数称为线性规划问题,其数学模型一般为:,b.若目标函数是设计变量的二次函数、约束是线性函数,则为二次规划问题。其一般表达式为:,五、优化问题的几何解释,无约束优化:在没有限制的条件下,对设计变量求目标函数的极小点。,其极小点在目标函数等值面的中心。,约束优化:在可行域内对设计变量求目标函数的极小点。,其极小点在可行域内或在可行域边界上。,第四节优化设计问题的基本解法,求解优化问题的方法:,解析法,数值法,数学模型复杂时不便求解,可以处理复杂函数及没有数学表达式的优化设计问题,图1-11 寻求极值点的搜索过程,第二章 优
8、化设计的数学基础,机械设计问题一般是非线性规划问题。,实质上是多元非线性函数的极小化问题,因此,机械优化设计是建立在多元函数的极值理论基础上的。,机械优化设计问题分为:,无约束优化,约束优化,无条件极值问题,条件极值问题,第一节 多元函数的方向导数与梯度,一、方向导数,从多元函数的微分学得知,对于一个连续可微函数f(x)在某一点 的一阶偏导数为:,它表示函数f(x)值在 点沿各坐标轴方向的变化率。,有一个二维函数,如图2-1所示。,图2-1 函数的方向导数,其函数在 点沿d方向的方向导数为,二、二元函数的梯度,即,三、多元函数的梯度,沿d方向的方向向量,即,图2-5 梯度方向与等值面的关系,若
9、目标函数f(x)处处存在一阶导数,则极值点的必要条件一阶偏导数等于零,即,满足此条件仅表明该点为驻点,不能肯定为极值点,即使为极值点,也不能判断为极大点还是极小点,还得给出极值点的充分条件,设目标函数在 点至少有二阶连续的偏导数,则,在这一点的泰勒二次近似展开式为:,第二节 多元函数的泰勒展开,泰勒展开写成向量矩阵形式,(1)F(X*)=0;必要条件(2)Hesse矩阵G(X*)为正定。充分条件,多元函数f(x)在 处取得极值,则极值的条件为,为无约束极小点的充分条件,其Hesse矩阵G(X*)为正定的。,则极小点必须满足,为无约束优化问题的极值条件,同学考虑二元函数在 处取得极值的充分必要条
10、件。,各阶主子式大于零,例:求函数的 极值,第四节 凸集、凸函数与凸规划,前面我们根据函数极值条件确定了极小点,则函数f(x)在 附近的一切x均满足不等式,所以函数f(x)在 处取得局部极小值,称 为局部极小点。,而优化问题一般是要求目标函数在某一区域内的全局极小点。,函数的局部极小点是不是一定是全局极小点呢?,图2-7 下凸的一元函数,一、凸集,的线段都全部包含在该集合内,就称该点集为凸集,否则为非凸集。,一个点集(或区域),如果连接其中任意两点,凸集的性质,二、凸函数,函数f(x)为凸集定义域内的函数,若对任何的,称,是定义在凸集上的一个凸函数。,三、凸性条件,1.根据一阶导数(函数的梯度
11、)来判断函数的凸性,设f(x)为定义在凸集R上,且具有连续的一阶导数的函数,则f(x)在R上为凸函数的充要条件是对凸集R内任意不同两点,不等式,恒成立。,2.根据二阶导数(Hesse矩阵)来判断函数的凸性,设f(x)为定义在凸集R上且具有连续二阶导数的函数,则f(x)在R上为凸函数的充要条件,Hesse矩阵在R上处处半正定。,四、凸规划,对于约束优化问题,凸规划的性质:,3.凸规划的任何局部最优解就是全局最优解,第五节 等式约束优化问题的极值条件,约束优化,等式约束,不等式约束,求解这一问题的方法,消元法,拉格朗日乘子法,1.消元法(降维法),以二元函数为例讨论。,二、拉格朗日乘子法(升维法)
12、,对于具有L个等式约束的n维优化问题,处有,将原来的目标函数作如下改造:,拉格朗日函数,待定系数,新目标函数的极值的必要条件,例2-4 用拉格朗日乘子法计算在约束条件,的情况下,目标函数,的极值点坐标。,第六节 不等式约束优化问题的极值条件,在工程中大多数优化问题,可表示为不等式约束条件的优化问题。,有必要引出非线性优化问题的重要理论,是不等式约束的多元函数的极值的必要条件。,库恩-塔克(Kuhn-Tucker)条件,一、一元函数在给定区间上的极值条件,一元函数f(x)在给定区间a,b上的极值问题,可以写成下列具有不等式约束条件的优化问题:,拉格朗日乘子法,除了可以应用于等式的极值问题,还可以
13、用于不等式的极值问题。,需引入松弛变量,将不等式约束变成等式约束。,设a1和b1为两个松弛变量,则上述的不等式约束可写为:,则该问题的拉格朗日函数,根据拉格朗日乘子法,此问题的极值条件:,由,(起作用约束),(不起作用约束),同样,来分析 起作用何不起作用约束。,因此,一元函数在给定区间的极值条件,可以表示为:,多元,库恩-塔克条件,分析极值点 在区间的位置,有三种情况,即,即,从以上分析可以看出,对应于不起作用的约束的拉格朗日乘子取零值,因此可以引入起作用约束的下标集合。,一元函数在给定区间的极值条件,可以改写为:,极值条件中只考虑起作用的约束和相应的乘子。,二、库恩-塔克条件,仿照一元函数
14、给定区间上极值条件的推导过程,可以得到具有不等式约束多元函数极值条件:,用起作用约束的下标集合表示,用梯度形式表示,可得,或,库恩-塔克条件的几何意义:在约束极小点处,函数的负梯度一定能表示成所有起作用约束在该点梯度的非负线性组合。,下面以二维问题为例,说明K-T条件的几何意义,角锥之内,即线性组合的系数为正,是在,取得极值的必要条件。,三、库恩-塔克条件应用举例,若给定优化问题的数学模型为,K-T条件,第三章一维搜索方法,采用数学规划法求函数极值点的迭代计算:,K+1次迭代的搜索方向,搜索的最佳步长因子,称为一维搜索。,是优化搜索方法的基础。,求解一元函数 的极小点,,可用解析法。,上式求的
15、极值,即求导数为零。,则,从上式看,需要求导进行计算,对于函数关系复杂的,解析法十分不便。,数值法的基本思路:确定 的搜索区间,在不断缩小区间,最终获得近似值。,第二节 搜索区间的确定和区间消去法原理,一、确定搜索区间的外推法,图3-2 正向搜索的外推法,图3-3 反向搜索的外推法,三、区间消去法原理,为了避免多计算函数值,将第三种情况合并到前两种情况中。,三、一维搜索方法的分类,从前面的分析可知,每次缩短区间,只需要在区间内在插入一点并计算其函数值。,而插入点的位置,可以由不同的方法来确定。就形成了不同的一维搜索方法。,第三节一维搜索的试探法,最常用的一维搜索试探法是黄金分割法,又称0.61
16、8法。,要求插入点a1、a2的位置相对于区间a,b两端点具有对称性。,除对称要求外,黄金分割法还要求在保留下来的区间再插入一点所形成的区间新三段,与原来区间的三段具有相同的比例分布。,2,所谓的“黄金分割”是指将一线段分成两段的方法,使整段长与较长段的长度比值等于较长段与较短段的比值,即,第四节一维搜索的插值方法,假定要在某一区间内寻找函数的极小点的位置,虽然没有函数表达式,但能够给出若干试验点处的函数值。,我们可以根据这些点处的函数值,利用插值的方法建立函数的近似表达式,进而求处函数的极小点,作为原来函数的极小点的近似值。这种方法称作插值法,也称函数逼近法。,一、牛顿法(切线法),函数很接近
17、,因此,在 点附近用一个二次函数 逼近。,即,依次继续下去,可得牛顿法迭代公式:,牛顿法的几何解释:,牛顿法的计算步骤:,给定初始点,控制误差,并令k=0。,1)计算,2)求,优点:收敛速度快。,缺点:每一点都要进行二阶导数,工作量大;,要求初始点离极小点不太远,否则有可能使极小化发散或收敛到非极小点。,二、二次插值(抛物线法),,作出如下的二次插值多项式,它应满足条件,(1),从极值的必要条件求得,(2),(3),要求出系数 和,联立方程组(1)、(2)、(3)。,令,所以,则,第四章无约束优化方法,第一节 概述,从第一章列举的机械设计问题,大多数实际问题是约束优化问题。,约束优化问题的求解
18、转化为一系列的无约束优化问题实现的。,因此,无约束优化问题的解法是优化设计方法的基本组成部分,也是优化方法的基础。,无约束优化问题的极值条件,解析法,数值法,数学模型复杂时不便求解,可以处理复杂函数及没有数学表达式的优化设计问题,搜索方向问题是无约束优化方法的关键。,各种无约束优化方法的区别:确定搜索方向的方法不同。,无约束优化方法分类,利用目标函数的一阶或二阶导数,利用目标函数值,(最速下降法、共轭梯度法、牛顿法),(坐标轮换法、鲍威尔等),第二节 最速下降法,优化设计追求目标函数值最小,若搜索方向取该点的负梯度方向,使函数值在该点附近的范围内下降最快。,按此规律不断走步,形成以下迭代算法:
19、,以负梯度方向为搜索方向,所以称最速下降法或梯度法。,搜索方向确定为负梯度方向,还需确定步长因子,即求一维搜索的最佳步长,既有,由此可知,在最速下降法中,相邻两个迭代点上的函数梯度相互垂直。而搜索方向就是负梯度方向,因此相邻两个搜索方向互相垂直。,第三节牛顿型方法,在第三章中,我们已经讨论了一维搜索的牛顿方法。,得出一维情况下的牛顿迭代公式,对于多元函数,在,泰勒展开,得,这是多元函数求极值的牛顿法迭代公式。,对牛顿法进行改进,提出“阻尼牛顿法”,第四节共轭方向及共轭方向法,为了克服最速下降法的锯齿现象,提高收敛速度,发展了一类共轭方向法。搜索方向是共轭方向。,一、共轭方向的概念,共轭方向的概
20、念是在研究二次函数,时引出的。,首先考虑二维情况,如果按最速下降法,选择负梯度方向为搜索方向,会产生锯齿现象。,为避免锯齿的发生,取下一次的迭代搜索方向直接指向极小点,如果选定这样的搜索方向,对于二元二次函数只需进行两次直线搜索就可以求到极小点。,应满足什么条件?,对于二次函数 在 处取得极小点的必要条件,等式两边同乘 得,是对G的共轭方向。,三、共轭方向法,1、选定初始点,下降方向 和收敛精度,k=0。,2、沿 方向进行一维搜索,得,3、判断 是否满足,若满足则打印,否则转4。,4、提供新的共轭方向,使,5、置,转2。,第五节 共轭梯度法,共轭梯度法是共轭方向法的一种,共轭向量有迭代点的负梯
21、度构造出来,所以称共轭梯度法。,从点 出发,沿G某一共轭方向 作一维搜索,到达,而在点、处的梯度分别为:,图4-9 共轭梯度法的几何说明,第六节变尺度法,变尺度法的基本思想:,前面讨论的梯度法和牛顿法,它们的迭代公式可以看作下列公式的特例。,变尺度法是对牛顿法的修正,它不是计算二阶导数的矩阵和它的逆矩阵,而是设法构造一个对称正定矩阵H来代替Hesse矩阵的逆矩阵。并在迭代过程中,使其逐渐逼近H-1。,由于对称矩阵H在迭代过程中是不断修正改变的,它对于一般尺度的梯度起到改变尺度的作用,因此H又称变尺度矩阵。,一、尺度矩阵的概念,变量的尺度变换是放大或缩小各个坐标。,通过尺度变换可以把函数的偏心程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械 优化 设计 方法

链接地址:https://www.31ppt.com/p-5281785.html