整数规划的建模.ppt
《整数规划的建模.ppt》由会员分享,可在线阅读,更多相关《整数规划的建模.ppt(69页珍藏版)》请在三一办公上搜索。
1、第八章 整数规划,在线性规划问题中,有一类特殊的情形,称为整数规划,这类问题的最优解必须是整数。如求解完成工作所需的最少人数,或加工一批零件所需机器的台数。由于这类问题并不是由简单的“四舍五入”法或“去零化整”法就能求得最优解,因此有必要对它作专门的讨论。,本章包含四部分的内容:第一部分:整数规划的建摸第二部分:整数规划的应用(0-1型整数规划)第三部分:分支定界法第四部分:指派问题,1、整数规划的建摸,整数规划问题的数学模型和线性规划基本相同,只是约束条件有所不同,下面我们以例题说明整数规划的建模。1、问题的提出例1 某厂拟用集装箱托运甲、乙两种货物,每箱的体积、重量、可获利润以及托运所受限
2、制如表,问两种货物各托运多少箱可获利润最大?,解:设x1,x2分别为甲、乙两种货物的托运箱数(应为大于或等于零的整数),这是一个整数规划问题,数学模型如下,从上式可见,它和线性规划问题的区别仅在于 x1,x2为整数这一条件。如果我们暂不考虑 这一条件,很容易求得相应线性规划问题的最优解为,但不满足整数要求,如按四舍五入取,又破坏了 这一条件,如舍去尾数取x1=4,x2=0 虽然满足了约束条件,但此时z=80,不是最优解,因为当时x1=4,x2=1,既满足约束条件,且z=9080。由此可见整数规划问题并非通过“化整”求其最优解。,从以上的例题可以看出:由于相应的线性规划的可行域包含了其整数规划的
3、可行解,就可有如下的性质:任何求最大目标函数值的纯整数规划或混合整数规划的最大目标函数值小于或等于相应的线性规划的最大目标函数值。,2、定义 规划中的变量(部分或全部)限制为整数时,称为整数规 划。若在线性规划模型中,变量限制为整数,则称为整数 线性规划。3、整数规划分类 如不加特殊说明,一般指整数线性规划。对于整数线性规 划模型大致可分为两类:(1)变量全限制为整数的,称纯(完全)整数规划。(2)变量部分限制为整数的,称混合整数规划。,4、整数规划特点 整数规划标准形式(实际为整数线性规划)AX=b,X0,CTX=min,xj为整数(j=1,n)(1)(1原线性规划有最优解,当自变量限制为整
4、数后,其整数规划解出现下述情况;原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。整数规划无可行解。,有可行解(当然就存在最优解),但最优解值变差。原线性规划为:2x1+4x2=6,X0,CTX=x1+x2=min 其最优实数解为:x1=0,x2=3/2,min CTX=3/2。若限制整数则得:x1=1,x2=1,min CTX=2。,5、求解方法分类:(1 割平面法主要求解纯整数线性规划(2 分枝定界法可求纯或混合整数线性规划(3 隐枚举法求解“01”整数规划:过滤隐枚举法;分枝隐枚举法(4 匈牙利法解决指派问题(“01”规划特殊情形)。(5蒙特卡洛法求解各种类型规划。,2、整
5、数规划的应用(0-1型整数规划),在整数规划中有一类特殊的情形,它的变量xi仅能取0或1,这时的xi称为0-1变量,这类问题也就称为0-1型整数规划。2、1 0-1型数规划的建模0-1变量作为逻辑变量,常被用来表示系统是否处于某个特定状态或者决策时是否采取某个特定方案。,当问题含有多项要素,而每项要素皆有两种选择时,也可用0-1变量来描述 设某问题有有限要素E1,E2,E n,其中每项Ej有两种选择Aj和(j=1.2.-,n)则:,2、1、2下面讨论0-1整数规划的几种应用实例。,1相互排斥的计划问题例3 某超市连锁店的布点问题。某超市连锁店在分析某城市的特征后,将该城市划分成四个区域:东片、
6、西片、南片、北片。在四个区域中共确定了10个连锁店的备选点,记作 在连锁店选择时需考虑以下限制:,东片的三个点 中,至少应选择一个;西片的两个点 中,应恰好选择一个;南片的四个点 中,最多只能选三个;北片只有一个备选点,可选可不选。,如果选中 点,其投资为 元,每年的预期收益为 元。现要求总投资不超过Z元,问应选择哪些备选点,既可满足限制,又可使每年的总收益最大。试建立这个问题的0-1型整数规划数学模型。解:设 则可建立如下0-1型整数规则数学模型:,例4 某钻井队要从以下10个可供选择的井位中确定5个钻井探油,使总的钻探费用为最小。若10个井位的代号为,相应的钻探费用为,并且井位选择上要满足
7、下列限制条件:或选择S1和S7,或选择S8;选择了S3或S4就不能选S5,反之,选了S5,则不能选S3或S4;在S5S8中最多选两个。建立这个问题的0-1型整数规划模型,解:,例5指派问题,有 n 项不同的任务,恰好 n 个人可分别承担这些任务,但由于每人特长不同,完成各项任务的效率等情况也不同。现假设必须指派每个人去完成一项任务,怎样把 n 项任务指派给 n 个人,使得完成 n 项任务的总的效率最高,这就是指派问题,例有四个工人,要分别指派他们完成四项不同的工作,每人做各项工作所消耗的时间如下表所示,问应如何指派工作,才能使总的消耗时间为最少。,解:引入01变量 xij,并令 xij=1(当
8、指派第 i人去完成第j项工作时)或0(当不指派第 i人去完成第j项工作时)这可以表示为一个0-1整数规划问题:Minz=15x11+18x12+21x13+24x14+19x21+23x22+22x23+18x24+26x31+17x32+16x33+19x34+19x41+21x42+23x43+17x44s.t.x11+x12+x13+x14=1(甲只能干一项工作)x21+x22+x23+x24=1(乙只能干一项工作)x31+x32+x33+x34=1(丙只能干一项工作)x41+x42+x43+x44=1(丁只能干一项工作)x11+x21+x31+x41=1(A工作只能一人干)x12+x2
9、2+x32+x42=1(B工作只能一人干)x13+x23+x33+x43=1(C工作只能一人干)x14+x24+x34+x44=1(D工作只能一人干)xij 为0-1变量,i,j=1,2,3,4,2相互排斥约束条件问题,例6 在例1中,关于货运的体积限制为。5X1+4X224如设货运有车运和船运两种方式,上面的体积限制条件是针对车运的,如用船运时体积限制条件为7X1+3X245,为把这两个限制条件统一在一个问题中,我们引入0-1变量,令,这样数学模型的约束条件就应写为:其中M为一充分大数,当 y=0时,上面两个约束条件实际上就是第一个在起作用,当y=1时第一式自然满足,起作用的仅是第二式。,2
10、、2 0-1型整数规划的解法,例 求解0-1整数规划,解:先考虑可能的解的组合,共23=8个,列于表3.3中。先分析第一个解(0,0,0),经检查为可行解,而其目标函数值为0,则考察其它的解,只有其目标函数值满足(3、6)时,才检查其是否可行,否则不予检查。我们把条件(3.6)称为过滤条件。再分析解(0,0,1),由于其目标函数值为-1,不满足过滤条件(3.6),故不予检查。,分析解(0,1,0),其目标函数值为7,故要检查,经检查不满足约束条件,故过滤条件不予修改。类似于上述分析,直到将所有的解均检查完毕,最后得到结论,最优解为(1,1,1),最优目标函数值为9。我们将上述求解方法称为隐枚举
11、法。,(二)、简单隐枚举法(max),原则:(1)、用试探法,求出一个可行解,以它的目标值作为当前最好值Z0(2)、增加过滤条件Z Z0(3)、将xi 按ci由小大排列,解:观察得解(x1,x2,x3)=(1,0,0)Z0=3过滤条件:3x1-2x2+5x3 3 将(x1 x2 x3)(x2 x1 x3),3、整数规划的分枝定界法,在求解整数规划问题时,如果可行域是有界的,人们很容易联想到的方法是穷举变量的所有可行的整数组合,然后比较它们的目标函数值以定出最优解。对于小型问题,如例1,此法是切实可行的,但对于大型问题,可行的整数组合很多,穷举法显然不能胜任求解任务。为此,在20世纪60年代初由
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整数 规划 建模
链接地址:https://www.31ppt.com/p-5270742.html