数学归纳法典型例题.ppt
《数学归纳法典型例题.ppt》由会员分享,可在线阅读,更多相关《数学归纳法典型例题.ppt(29页珍藏版)》请在三一办公上搜索。
1、数学归纳法是用来证明某些与 有关的数学命题的一种方法基本步骤:证明:当 时,命题成立;假设 时命题成立,证明:当 时,命题成立根据可以断定命题对一切正整数nn0都成立,数学归纳法部分,1数学归纳法,正整数,2数学归纳法证明步骤,nn0,nk(k n0),nk1,1.说明:归纳法是一种推理方法,数学归纳法是一种证明方法归纳法帮助我们提出猜想,而数学归纳法的作用是证明猜想“观察猜想证明”是解答与正整数有关命题的有效途径,利用数学归纳法证明的命题范围比较广泛,可以涵盖代数、三角恒等式、不等式、数列、几何问题、整除性问题等等,所涉及的题型主要有以下几个方面:(1)已知数列的递推公式,求通项或前n项和;
2、(2)由一些恒等式、不等式改编的探究性问题,求使命题成立的参数的值或范围;(3)猜想并证明对正整数n都成立的一般性命题,2.数学归纳法的主要应用,(1)用数学归纳法证明的对象是与正整数n有关的命题(2)在用数学归纳法证明中,两个基本步骤缺一不可,3应用数学归纳法的注意事项,【例1】用数学归纳法证明:1427310n(3n 1)n(n1)2(其中nN),题型一恒等式问题,(1)当n1时,左边144,右边1224,左边右边,等式成立(2)假设当nk(kN,k1)时等式成立,即1427310k(3k1)k(k1)2,那么,当nk1时,1427310k(3k1)(k1)3(k1)1k(k1)2(k1)
3、3(k1)1(k1)(k24k4)(k1)(k1)12,即当nk1时等式也成立根据(1)和(2),可知等式对任何nN都成立,证明,用数学归纳法证明与正整数有关的等式命题时,关键在于“先看项”,弄清等式两边的构成规律,等式的两边各有多少项,项的多少与n的取值是否有关,由nk到nk1时,等式两边会增加多少项难点在于寻找nk时和nk1时的等式的联系,【例2】几个半圆的圆心在同一条直线l上,这几个半圆每两个 都相交,且都在直线l的同侧,求证这些半圆被所有的交点 最多分成的圆弧段数为f(n)n2.(n2,nN),题型二几何问题,用数学归纳法证明几何问题的关键是“找项”,即几何元素从k个变成k1个时,所证
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 归纳法 典型 例题
链接地址:https://www.31ppt.com/p-5270234.html