数字PID算法分析.ppt
《数字PID算法分析.ppt》由会员分享,可在线阅读,更多相关《数字PID算法分析.ppt(112页珍藏版)》请在三一办公上搜索。
1、第三章 常规数字控制器的设计,31 数字控制器的设计方法分类 按其设计特点分为二大类:计算机控制系统的描述方法分为:一是将连续的被控对象离散化等效的离散系统数学模型,然后在离散系统的范畴内分析整个闭环系统;二是将数字控制器等效为一个连续环节,然后采用连续系统的方法来分析与设计整个控制系统。相应地,在设计方法上就可以分为:模拟化设计方法和离散化设计方法。1.模拟化设计方法一般可按以下步骤进行:,第三章 常规数字控制器的设计,2.离散化设计方法首先用适当的离散化方法将连续部分(如图所示的保持器和被控对象)离散化,使整个系统完全变成离散系统,然后用离散控制系统的设计方法来设计数字控制器,最后用计算机
2、实现控制功能。,第三章 常规数字控制器的设计,3两种方法的比较 模拟化设计方法可引用成熟的经典设计理论和方法。但在“离散”处理时,系统的动态特性会因采样周期的增加而改变,甚至导致闭环系统的不稳定。离散化设计方法运用的数学工具是Z变换与离散状态空间分析法。这种方法是一种直接数字设计方法,不仅更具有一般性,而且稳定性好、精度高。相对而言有时称为精确法。需要注意的是,该法的精确性仅限于线性范围内以及采样点上才成立。,32模拟控制器的离散化,表征模拟校正装置的重要参数是:极点与零点的数目;频带宽度与截止频率;DC增益;相位裕度;增益裕度、超调量、闭环频率响应峰值等。,在离散化过程中,上述特性都要保持下
3、来是不大可能的。在选择模拟控制器的离散化方法时,首先必须明白对离散化控制算法有何要求,以保证模拟校正装置的主要特性能得到保持。,321Z变化法,Z变换法就是在D(z)与D(s)之间建立的一种映射关系(),这种映射关系保证模拟控制器的脉冲响应的采样值与数字控制器的输出相同。,在设计中所需要的高频部分出现频率混迭问题。为了解决这一问题:,增加采样角频率,使 远高于控制器的截止频率。,2.带有零阶保持器的Z变换法,在原线性系统的基础上串联一个虚拟的零阶保持器,再进行Z变换从而得到D(s)的离散化模型D(z),3.差分变换法(又称数值积分法),将微分方程离散化为差分方程,最后求z传递函数。,整理后得到
4、z传递函数,或,对比可看出:,或,这就是后向差分变换式:,前向差分:,或,4.双线性变换法根据z变换定义:,展成级数:,同理:,得双线性变换公式:,双线性变换公式可以进行实s传递函数与z传递函数相互转换,转换公式如下:,各种离散化方法的比较,33 数字PID控制-模拟控制器的离散化设计方法,331理想微分PID控制,设系统的误差为e(t),则模拟PID控制规律为,它所对应的连续时间系统传递函数为,(1)比例调节器控制规律:,(2)比例积分调节器控制规律:,(3)PID调节器控制规律:,PID控制器连续时间系统传递函数,PID模拟控制器的离散化,用矩形法来计算数值积分:,用后向差分来代替微分:,
5、则离散化的PID控制规律为:,上式表示的控制算法提供了执行机构的位置所以称为PID位置控制算法。这种算式中有一累加项,随着时间k的增加,累加的项次也依次增加,不利于计算机计算。另外,如果由于某种干扰因素导致u(k)为某一极限值时,被控对象的输出也将作大幅度的剧烈变化,由此可能导致严重的事故。就其原因,位置式算式存在以上缺陷的主要原因是它所给出的只是当前控制量的大小,与此前时刻控制量的大小却完全不相关。为此,有必要改进上述算法。,在很多控制系统中,由于执行机构是采用步进电机或多圈电位器进行控制的,所以,只要给出一个增量信号即可。,写出K-1的输出值:,上两式相减得PID增量式控制算法,增量式PI
6、D算法与位置式PID算法的比较:,两者本质相同,只是前者需要使用有附加积分作用的执行机构。但有如下优点:1、计算机只输出增量,误动作时影响小,必要时可增设逻辑保护;2、手动/自动切换时冲击小;3、算式不需要累加,只需记住四个历史数据,即e(k-2),e(k-1),e(k)和u(k-1),占用内存少,计算方便,不易引起误差累积。,数字PID控制算法程序框图,PID控制规律的脉冲传递函数形式,两边求z变换,并注意到,得,理想微分PID控制的实际效果并不理想,从阶跃响应看,它的微分作用只能维持一个采样周期。由于工业用执行机构(如气动调节阀或电动调节机构)的动作速度限制,致使偏差大时,微分作用不能充分
7、发挥,再加之理想微分还容易引进高频干扰。为此,实际应用中,几乎所有的数字控制回路,通常都加一低通滤波器来限制高频干扰的影响。,问题:,实际微分PID控制算式一 通过一级低通滤波器来限制高频干扰的影响,332实际微分PID控制,低通滤波器和理想微分PID算式相结合后的传递函数为:,则差分方程:,若令(Kd为微分系数),(2)实际微分PID控制算式之二,实际微分PID算式的传递函数:,微分作用输出差分方程为:,图中的前置方块主要起微分作用,所以它也称为微分先行PID控制。,积分作用输出差分方程为:,比例作用输出差分方程为:,位置型算式为:,(3)实际微分PID控制算式之三 不完全微分,由图可见,本
8、算法是微分环节上加一个惯性环节,故也称不完全微分PID控制,它仅改变了标准PID控制器的微分部分,使得在偏差发生突变时,微分作用可比较平缓。,比例、积分和微分三个框的输出差分方程,3.3.3 标准PID控制算法的改进,在实际应用中,数字PID控制器的控制效果有时不如模拟PID控制器。原因:主要是因为数字调节器的控制量在一个采样周期内保持不变,使得在这段时间内系统相当于开环运行。其次由于计算机的数字运算以及数字量输入输出的时间,使得控制作用在时间上有延滞,计算机的有限字长及AD,DA转换精度也给控制量带来了误差。办法:充分发挥计算机运算速度快,逻辑判断功能强,编制程序灵活等优势。手段:对PID算
9、法进行了一系列改进。,3.3.3 标准PID控制算法的改进,3.3.3.1 积分项的改进,在PID控制中,积分作用是消除余差。,梯形积分提高积分项的运算精度 将矩形积分 用梯形积分来代替代价:增大存储量和需要更多的运算时间。,消除积分不灵敏度 容易出现小于字长的精度而丢弃,此时也就无积分作用,这种现象称为积分不灵敏区或称积分作用丢失。采用以下措施:增加A/D转换位数,加长运算字长,这样可提高运算精度。当积分项连续出现小于输出精度的情况下,不要把它们作为“零”舍掉,而是把它们一次一次累加起来,即,直到累加值Si大于时,再输出Si。同时把累加单元Si清零。,(3)PID算法积分饱和现象及其抑制,图
10、312 PID位置式算法的积分饱和现象,在实际过程控制中,控制变量由于受很多条件的约束而被限制在一个有限范围内,如:,采用标准PID位置式算法,只要系统的偏差没有消除,积分作用就会继续增加或减少。最后使控制量达到上或下的极限值,使得系统进入饱和范围。,过限削弱积分法,一旦控制变量进入饱和区,则程序只执行削弱积分项的运算,而停止增大积分项的运算。,积分分离法,积分分离法的基本思想为:当误差e大于某个规定的门限值时,删去积分作用,从而使ei不至于过大。只有当e较小时,才引入积分作用,以消除稳态误差。,称为门限值。,3.3.3.2 微分项的改进,由于微分作用是在相邻的采样周期内进行,因此它的强弱不仅
11、与微分时间Td,放大系数Kp有关,而且与采样周期T也有明显关系。当T太小时,二次采样之间被控参数变化一般不会太大,因而微分作用就弱。为了在T小时增加微分作用,可增加Kp或Td,但这样一来,会使抗噪声特性恶化,微分作用对它们又特别敏感,因此应设法减少噪声和数据误差在微分项中的影响。,在数字PID算式的微分项中如何减少数据误差和噪声,也是应用中经常遇到的一个问题,这一点可以从微分项表达式看出。,微分项的改进方法,偏差平均 减少计算次数 测量值微分当控制系统给定值r(k)发生阶跃变化时,微分动作将导致控制量u(k)的大幅度变化,这不利于生产的稳定操作。因此,在微分项中不考虑给定值r(k),只对测量值
12、y(k)(即被控量)进行微分。,式中平均项系数m的选取,取决于被控对象的特性。,改成:,必须注意,对串级控制的副回路而言,给定值是由主回路输出给定的,其变化一般也应加以微分处理,因此,应采用原微分项算式对偏差进行微分。需要指出的是,数字PID算式中的测量值微分的微分项的物理意义,与模拟PID算式中的微分项一样,它们的输出都与被控参数的变化率成正比。只是由于数字PID在采样周期内进行一次,因此这里所指的变化率实际上具有平均变化率的概念。同样数字PID微分项具有超前作用,它与“零阶保持器”具有的滞后正相反,因此可以互相补偿,以改善控制性能。,3333 干扰的抑制,数字PID控制器的输入量是系统的给
13、定值r和系统实际输出y的偏差值e。在进入正常调节过程后,由于e值不大,相对而言,干扰对控制器的影响也就很大。为了消除干扰的影响,除了在硬件上采取相应的措施以外,在控制算法上也应采取一定措施。四点中心差分法的思想是:不直接采用误差e(i),而是用过去和现在四个采样时刻的误差平均值作为基准:,通过加权求和,构成近似微分,修正后的PID位置算法:,修正后的PID增量式算法:,334 数字PID调节器的参数整定,PID调节器的设计一般来说可以分成两个部分,首先是选择调节器的结构,以保证闭环系统的稳定,并尽可能地消除稳态误差。一旦调节器的结构确定下来,调节器设计的下一步任务就归结为参数整定。,3341
14、PID调节器参数对系统性能的影响,放大倍数Kp对系统性能的影响 对系统的动态性能:加大,将使系统动作灵敏,响应速度加快,偏大,衰减振荡次数增多,调节时间变长。当太小又会使系统的响应速度缓慢。Kp的选择以输出响应产生4:1衰减过程为宜。对系统的稳态性能:在系统的稳定性的前提下,加大Kp可以减少余差(又称残差或稳态误差),但靠它不能消除余差。因此,Kp的整定主要依据系统的动态性能。,积分时间对系统性能的影响 对系统的动态性能:积分时间Ti通常影响系统的稳定性。Ti太小,系统将不稳定,Ti偏小振荡次数较多;Ti太大,系统的动态性能变差;当Ti较适合时,系统的过渡过程特性比较理想。对系统的稳态性能:积
15、分时间Ti的作用有助于消除系统余差,提高了系统的控制精度,但若Ti太大,积分作用太弱,则不能减少余差。微分时间Td对系统性能的影响 对系统的动态性能:微分时间常数Td 的增加即微分作用的增加可以改善系统的动态特性,如超调量减少,调节时间缩短,允许加大比例控制,使稳态误差(余差)减少,提高控制精度。但微分作用有可能放大系统的噪声,减低系统的抗干扰能力。对系统的稳态性能:微分环节的加入,可以在误差出现或变化瞬间,按偏差变化的趋向进行控制。它引进一个早期的修正作用,有助于增加系统的稳定性。,采样周期T的选取应与PID参数的整定综合起来考虑,选取采样周期时,一般应考虑以下因素:扰动信号(2)对象的动态
16、特性(3)计算机所承担的工作量(4)对象所要求的控制品质(5)与计算机及AD、DA转换器性能有关(6)考虑执行机构的响应速度。,3342 采样周期的选定,3343 实验确定法整定PID参数,(1)试凑法:试凑法是通过计算机仿真或实际运行,观察系统对典型输入作用的响应曲线,根据各调节参数(,)对系统响应的影响,反复调节试凑,直到满意为止,从而确定PID参数。首先只整定比例系数,将 由小变大,使系统响应曲线略有超调。若在比例调节的基础上,系统稳态误差太大,则必须加入积分环节。若使用PI调节器消除了稳态误差,但系统动态响应经反复调整后仍不能令人满意,则可以加入微分环节,构成PID调节器。,PID参数
17、的整定可以按模拟调节器的方法来进行。参数整定通常有两种方法,即理论设计法和实验确定法。,(2)PID参数的工程整定法,临界比例法 这一方法适用于能自平衡的被控对象,首先选定一个足够短的采样周期。用比例调节器构成闭环使系统工作。逐渐加大比例系数,直到系统发生持续等幅振荡,即系统输出或误差信号发生等幅振荡。记此时的比例系数为,临界比例度,临界振荡周期为。按下面的经验公式得到不同类型调节器参数。,控制度是以模拟调节为基准,将直接数字控制即DDC的控制效果与模拟控制效果相比较。,(2)PID参数的工程整定法,阶跃曲线法,让系统处于手动操作的开环状态下,将被调量调节到给定值附近,并使之稳定下来。然后突然
18、改变给定值,给对象一个阶跃输入信号,并记录下被控量在阶跃输入下的整个变化过程曲线。在阶跃响应曲线的拐点处作切线求得滞后时间,被控对象时间常数,然后根据表34求得各参数。,3344 数字PID的变参数整定,(1)按照负荷预先设置整定参数方法,(2)时序控制按一定时间顺序采用相应的Kc、Td、Ti参数。(3)人工模型模拟现场操作工人的操作方法,根据经验决定各种情况下的参数值,并编入程序中,然后在执行程序时,自动改变这些参数和给定值。,举例:,1、对于一阶惯性对象,负荷变化不大,工艺要求不变,可采用P控制,例如:压力、液位、串级副付回路等。2、对于一阶惯性加纯滞后对象,负荷变化不大,要求控制精度较高
19、的场合,可采用PI控制,例如用于压力、流量、液位控制。3、对于纯滞后时间较大,控制性能要求高的场合,可采用PID控制,如过热蒸汽温度控制,成分控制等。4、对于二阶以上惯性加纯滞后对象,负荷变化较大,控制性能要求较高时,应采用串级、前馈-反馈,前馈-串级或纯滞后补偿等复杂控制。,3345 数字PID参数的最优整定,(1)性能指标的选择,(2)寻优方法,多参数的寻优已有不少成熟的算法,如单纯型加速法、梯度法等。由于单纯型加速法具有控制参数收敛快,计算工作量小等优点,因此被普遍应用。,34 最少拍数字控制系统的设计,若已知广义对象的脉冲传递函数G(z),并且根据对控制系统的性能的要求确定(z),则数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字 PID 算法 分析
链接地址:https://www.31ppt.com/p-5269981.html