教学设计模式介绍.ppt
《教学设计模式介绍.ppt》由会员分享,可在线阅读,更多相关《教学设计模式介绍.ppt(70页珍藏版)》请在三一办公上搜索。
1、1,教学设计的出发点,教学设计模式介绍,余杭区教育局教研室 陈朝阳,“中学数学核心概念、思想方法结构体系及教学设计”研究成果,2,课堂教学中:“核心概念”是一堂课的“灵魂”,教学目标的制定、教学方法的选择、教学过程的设计直至教学效果的评价等等,都应围绕“核心概念”;核心概念是学生数学认知结构中的主要“固着点”,是同化其他数学知识的出发点,由其反映的数学思想方法是理解数学知识、解决数学问题的依据。,3,一、什么是教学设计,教学设计也称教学系统设计,是以传播理论、学习理论和教学理论为基础,运用系统论的观点和方法,分析教学中的问题和需求,从而找出最佳解决方案的一种理论和方法。是将学和教的原理转化成教
2、学材料和教学活动的方案的系统化过程,是一种教学问题求解,侧重与问题求解中方案的寻找和决策的过程。,4,教学设计是一门科学教学设计是一门艺术教学设计是一种运用系统方法,分析教学问题,制定教学目标,选择教学策略,评价教学效果的操作过程,并将结果表现为一种教学系统。,一、什么是教学设计,5,教学设计与备课、教案有什么不同?,教学设计与案例有什么不同?,教学设计与说课有什么不同?,6,教学设计与教案有什么不同?,教学设计,是以分析教学需求为基础,以确立解决教学问题的步骤为目的。,仅是实施教学的计划安排,教 案,1.范畴上的不同,2.对应层次不同,3.指导思想不同,4.元素含义不同,7,教学设计与教学案
3、例有什么不同?,教学案例是从教育教学实践活动中总结出来的实例,在被描述的具体情境中包含一个或者多个引人入胜的问题,同时也包含有解决这些问题的方法和技巧,有具体情境的介绍和描述,也有一定的理论思考和对实际活动的反思。,什么是教学案例,8,教学设计与案例有什么不同?,教学设计,9,说课就是教师口头表述具体课题的教学设想及其理论依据,讲述自己的 教学设计,然后由听者评说,达到互相交流,共同提高的目的的一种教学研究和师资培训的活动。,什么叫说课,说课其实就是说说你是怎么教的,你为什么要这样教。,教学设计与说课有什么不同?,10,教学设计与说课有什么不同?,11,二、为什么要进行教学设计,凡事预则立,不
4、预则废。,预设是教学的基本要求,因为教学是一个有目标、有计划的活动,教师必须在课前对自己的教学任务有一个清晰、理性的思考与安排,为学生对知识系统的、科学的掌握而准备。生成,离不开科学的预设;预设,是为了更好的生成。,12,二、为什么要进行教学设计,1.为了实现一定的教学目标;,2.为学生策划学习资源和学习活动的 过程;,3.为了促进学生学习和发展而设计的 解决教与学问题。,教学设计的内涵教师为达到教学目标对自己的教学行为所进行的系统规划。主要解决“教什么”和“怎么教”两个问题。,13,脉络要“准”是教学设计的“出发点”;目标要“明”是教学设计的“方向”;立意要“新”是教学设计的“灵魂”;构思要
5、“巧”是教学设计的“翅膀”;方法要“活”是教学设计的“表现形式”;练习要“精”是教学设计的“终结点”。,三、怎样写好教学设计,14,新课程教学设计不但要体现教师教什么、怎么教和教的怎样的问题,更要体现学生学什么、怎么学和学的怎样的设计。人民教育出版社中学数学室主任章建跃博士领衔的课题中学数学核心概念、思想方法结构体系及教学设计的理论与实践给出了一个基本的教学设计框架结构。,15,由如下栏目组成:(1)内容和内容解析;(2)目标和目标解析;(3)教学问题诊断分析;(4)教学支持条件分析;(5)教学过程设计;(6)目标检测设计。,16,教学设计,(1)对数学概念的准确理解高水平数学教学的前提是教师
6、自己准确理解所教内容,而“理解”的关键在于把握核心概念及其反映的数学思想方法;(2)对教学目标的准确定位以对数学概念的准确理解、数学概念的教学解析和对学生已有认知基础的把握为前提,确定教学目标,以使教学目标处于学生思维最近发展区内;(3)对学生在理解数学概念中存在的困难的深入分析以使教师的教学行为更有针对性,把教学的重点放在解决学生理解的疑难上,提高课堂效率、效果;(4)教学过程注重“问题引导学习”以目标为定向,围绕概念的核心,针对学生的理解困难,以数学知识“再发现”为线索,设置问题串,引导学生独立思考和探索,在教师或同伴帮助下主动获取知识,这是中国“启发式教学”传统与当代认知主义、建构主义教
7、学的综合;(5)知识训练的有效性和及时性在理解概念的基础上,通过变式训练,使学生掌握概念应用的基本技能,促进学生记忆知识;(6)教学目标达成度的有效检测以目标为定向,选择适当的数学问题用以检验课堂教学效果。,考虑到数学的学科特点,为了更加体现数学核心概念教学设计的本质,同时也为了以教学设计为载体,使我们关注的教师专业化成长能得到研究,确定教学设计中的如下重点:,17,先看看各条目的具体含义,1内容和内容解析(1)内容:对当前“核心概念”的内涵和外延作简要说明;(2)内容解析:重点是在揭示内涵的基础上,说明概念的核心之所在,并要对概念在中学数学中的地位进行分析,其中隐含的思想方法要作出明确表述。
8、在此基础上阐明教学重点。这里要在整体框架结构的指导下,围绕当前内容,从数学上进行微观分析。,18,以曲线与方程为例:,1内容:(1)曲线的方程与方程的曲线的概念;(2)求曲线的方程;(3)坐标法的基本思想.其中(1)(3)为第一课时的内容,(2)、(3)为第二课时的内容 2内容解析:“曲线与方程”是普通高中数学课程标准规定的教学内容这一内容既是直线与方程、圆与方程理论的一般化,也是进一步学习椭圆、双曲线、抛物线的指导思想尽管学习这一内容是学生体会并理解圆锥曲线与其方程的基础,但是更为重要的是使人们通过坐标系这座桥,可以利用方程以及代数的运算来研究曲线,这正是这一内容成为数学的核心概念的原因,也
9、是曲线与方程这一概念的核心之所在 因此,教学时不仅要让学生学习如何求曲线的方程,而且要通过这一内容培养学生的坐标法思想,使学生明白求出曲线方程的真正意义在于利用曲线的方程去研究曲线.,揭示教学重点,阐述其概念的核心之所在,19,2目标和目标解析(1)目标:用“了解”“理解”“掌握”以及相应的行为动词“经历”“体验”“探究”等表述目标;(2)目标解析:对“了解”“理解”“掌握”以及“经历”“体验”“探究”的含义进行解析,一般的,核心概念的教学目标都应进行适当分解。目标不分为“知识与技能”“过程与方法”“情感态度价值观”,而以1.,2.,3的方式逐条列出,要强调把能力、态度等“隐性目标”融合到知识
10、、技能等“显性目标”中,以避免空洞阐述“隐性目标”,使目标对教学具有有效的定向作用。,20,目标:理解函数平均变化率的概念,会运用平均变化率表示函数变化的状态;通过平均变化率的概念理解函数瞬时变化率的概念。目标解析:通过实例用函数平均变化率的大小表示函数变化的快慢;用数学符号、几何图形准确表示函数 的平均变化率;通过实例说明平均变化率不能表示某处的变化状态;由函数在某处附近的平均变化率的概念导出瞬时变化率的概念,并会用瞬时变化率表示函数变化状态,知道瞬时变化率就是导数。,以变化率与导数为例:,21,3教学问题诊断分析 设计者根据自己以往的教学经验,数学内在的逻辑关系以及思维发展理论,对本内容在
11、教与学中可能遇到的障碍进行预测,并对出现障碍的原因进行分析。在上述分析的基础上指出教学难点。,22,具体的,可以从认知分析入手,即分析学生已经具备的认知基础(包括知识、思想方法和思维发展基础),对照教学目标还需要具备哪些条件,通过已有基础和目标之间的差异比较,分析教学中可能出现的障碍。本栏目的内容应当做到言之有物,以具体数学内容为载体进行说明。例如,在“向量的坐标表示”中,可以包含如下诊断:“学生在理解始点不在坐标原点的向量的坐标表示时会出现障碍,其原因是”。另外,不同的学生会出现不同的教学问题,这也是在分析过程中要加以注意的。,23,1如何理解曲线与其方程之间的关系?学生可以很流利地背出曲线
12、与其方程应该满足的两条,但是如何证明“一条曲线与一个方程之间具有互为表示的关系”,这是学生学习时可能遇到的第一个教学问题,也是第一课时的教学难点.这个教学问题可以结合“直线与其方程”、“圆与其方程”进行说明,以曲线与方程为例:,24,2在求曲线的方程时,如何建立平面直角坐标系?这是学生会遇上的第二个教学问题,也是第二课时的教学难点教学时,应通过实例,帮助学生总结出建立坐标系的基本要点,并用具体问题让学生练习进行体会,25,3在将曲线上的点应该满足的几何特征转化为点的坐标应满足的等式后,常常遇上“将所得等式化简得到所求方程”的问题对于有些复杂的等式,化简是一个学生不易把握的问题,学生在此极易出错
13、,这是第三个教学问题.教学时不能因为这个问题而使教学偏离重点,因此教学时可适当使用信息技术工具以解决这个问题.4学生学习时,可能会因更多地关注代数运算而忽略数学思想的提炼,这个教学问题的解决,需要教师有目的地进行引领.,26,4教学支持条件分析(根据需要设置)为了有效实现教学目标,根据问题诊断分析和学习行为分析,分析应当采取哪些教学支持条件,以帮助学生更有效地进行数学思维,使他们更好地发现数学规律。当前,可以适当地侧重于信息技术的使用,以构建有利于学生建立概念的“多元联系表示”的教学情境。,27,1在进行曲线与方程的教学时,学生已经在数学必修1中学习了函数及其图象,在数学必修2中学习了直线的方
14、程与圆的方程,这些内容是学生理解曲线与方程概念的重要条件,因此教学时应予以充分注意,引导学生多进行归纳与概括.2向量是刻画直线的几何特征、位置关系以及进行运算的重要工具,学生在数学4时学习了平面向量,这就使其成为学习本内容的重要支持3曲线与方程是数形结合的典范,教学这一内容时会涉及大量图形的绘制与方程的简化等代数运算,因此,图形计算器或几何画板是重要的支持条件,教学时充分注意这一条件,不仅可以节省大量时间用于学生思考,而且可以对实际问题中的数据不加“修饰”地进行分析.,以曲线与方程为例:,28,5教学过程设计 教学过程的设计一定要建立在前面诸项分析的基础上,做到前后呼应。要强调教学过程的内在逻
15、辑线索,这一线索的构建可以从数学概念和思想方法的发生发展过程(基于内容解析)、学生数学思维过程两个方面的融合来完成。学生数学思维过程应当以学习行为分析为依据,即要对学生应该做什么、能够做什么和怎样做才能实现教学目标进行分析的基础上得出思维过程的描述。可以利用问题诊断分析中得出的结论,基于自己以往教学中观察到的学生学习状况,通过分析学生学习本内容的思维活动过程,给出本内容的学习中学生应该怎样思考和操作的具体描述。其中,应突出核心概念的思维建构和技能操作过程,突出思想方法的领悟过程分析。,29,教学过程设计以“问题串”方式呈现为主。所提出的问题应当注意适切性,对学生理解数学概念和领悟思想方法有真正
16、的启发作用,达到“跳一跳摘果子”的效果。在每一个问题后,要写出问题设计意图(基于教学问题诊断分析、学生学习行为分析等)、师生活动预设,以及需要概括的概念要点、思想方法,需要进行的技能训练,需要培养的能力,等。这里,要特别注意对如何渗透、概括和应用数学思想方法作出明确表述。教学过程应当注意根据教学内容的特点进行设计,例如,基于问题解决的设计,讲授式教学设计,自主探究式教学设计,合作交流式教学设计,等。,30,6目标检测设计 通过课堂教学,目标是否达成,需要以一定的习题、练习进行检测。值得强调的是对于每一个(组)习题或练习都要写明设计目的,以加强检测的针对性、有效性。,31,从这个教学设计框架结构
17、来看,重心不仅仅在教学过程设计这一环节,而内容和内容解析、目标和目标解析该占有较大的篇幅。这正是本课题研究所倡导的。,32,33,教学设计中的内容和内容解析、目标和目标解析的本质是教学任务分析,要解决的是“学什么?”“为什么要学?”“学后能解决什么问题?”这是教学设计的重要前提,是每位教师在进行教学设计中必须首先做好的工作。教学中存在的各种问题绝大多数与对教学内容的认识不到位、教学目标定位不准确有很大的关系。决定这些任务的是内容所包含的核心概念和思想方法,这些核心概念、思想方法影响后续的教学目标。,34,(一)内容与内容解析的界定剖析 在内容与内容解析的描述中,应尽量地突出该内容的核心部分,主
18、要表达两层含义:“学什么内容”和“为什么要学这些内容”。其关键是理解数学。,35,1.处理教材的依据 教材往往是专家编写的、供教师使用的内容文本,但是如何使用取决于教师的专业发展水平。一般来说,新手教师往往照本宣科,完完整整地依据教材内容和呈现序列来实施教学,对教材并没有进行必要的处理,缺乏对教材进行批判的态度,甚至有点过于迷信。专家型教师一定会对教材进行处理,能结合自己对课程标准的理解、学生的实际学习情况、学校的现实条件和学习目标,进行适当的加工与改进。,36,另一个处理教材的依据是现场条件。当教师处理教材时,依据课程标准,主要是考虑内容的必要性维度。而现场条件着重考虑的是可能性维度,如学生
19、的认知准备、教师自身的优势以及可得到的课程资源等问题就是现场条件中的重要因素。,37,2.处理教材的策略 正如前面所说的,处理教材内容是一种情境化的行动,教师必须“用教材教”,而不是“教教材”。“用教材教”意味着教师在准备教学时要采取相应的策略来处理教材。具体而言,有这样五种教材内容改进策略:增:新加内容,如补充材料,或主题活动、实验操作等;删:删除重复的、不符合标准的、不必要的内容;换:更换不合适的或不合理的内容;合:整合不同知识点或不同学科的内容;立:打破原来学科内容的次序,创立全新的框架结构。,38,案例一:“古典概型”教学设计中的内容与内容解析:,(一)浙江省桐乡市高级中学 邱强老师:
20、本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,他的引入避免了大量的重复试验,而且得到的是概率精确值,同时古典概型也是后面学习条件概率的基础,起到承前启后的作用,所以在概率论中占有相当重要的地位。主要内容有:基本事件的概念及特点:()任何两个基本事件是互斥的;()任何事件(除不可能事件)都可以表示成基本事件的和。古典概型的特征:()试验中所有可能出现的基本事件只有有限个;()每个基本事件出现的可能性相等。古典概型的概率计算公式,用列举法计算一些随机事件所含的基本事件的个数及事件发
21、生的概率。随机事件概率的基本算法是通过大量重复试验用频率来估计,而其特殊的类型古典概型的概率计算,可通过分析结果来计算。学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。本节课的重点是理解古典概型的概念及利用古典概型求解随机事件的概率。,39,(二)浙江省瑞安中学 戴海林老师:内容:古典概型的概念及概率计算公式。内容解析:本节课是高中数学(必修3)第三章概率的第二节古典概型的第一课时,是在学习随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下进行教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它曾是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教学 设计 模式 介绍
链接地址:https://www.31ppt.com/p-5269249.html