圆锥曲线与方程.ppt
《圆锥曲线与方程.ppt》由会员分享,可在线阅读,更多相关《圆锥曲线与方程.ppt(49页珍藏版)》请在三一办公上搜索。
1、选修11 选修21 第二章,张启源,圆锥曲线与方程,人教A版,教学解读,知识:螺旋上升 分层递进,“课标”构建的解析几何课程体系,是以坐标法为核心,依“直线与方程圆与方程圆锥曲线与方程极坐标系与参数方程”为顺序,螺旋上升、循序渐进地展开内容。,地位与作用,圆锥曲线是一个非常重要的几何模型;圆锥曲线的几何性质在日常生活、社会生产以及其他科学中有着广泛的应用。本章对文理的要求不同。本章在高中几何知识链中起到承上启下的作用。圆锥曲线是体现数形结合思想的好素材。,内容与要求,内容与要求,教材特点,1.“圆锥曲线与方程”强调解析几何的基本思想方法:坐标法(或解析法),突出用方程研究曲线,“曲线与方程”“
2、方程与曲线”反映了空间形式与数量关系之间的内在联系,用数及其运算为工具,在平面直角坐标系下,用代数方法研究几何问题,是数形结合的重要方面。,教材特点,2.“圆锥曲线与方程”中介绍三种圆锥曲线时,注意引入的过程,对过程进行分析。在过程的分析中引导学生自主探索,从分析每种曲线的典型几何特征入手选择适当的平面直角坐标系,建立每种曲线的标准方程,教材特点,3.在三种圆锥曲线的简单几何性质的研究中,从直观入手,用代数方法研究它们的几何性质,注意代数方法与几何直观相结合,4.“圆锥曲线与方程”实例丰富,注重实际背景和应用,几个值得注意的问题,1.注意知识内容的前后衔接,2.圆锥曲线的第二定义、圆锥曲线的统
3、一定义以及非标准形式的圆锥曲线方程不作教学求,3.关注曲线与方程和函数与图象之间的关系,4.重视信息技术工具的作用,加强不同知识内容之间的联系,从不同角度看待同一数学内容,感受数学的整体性。,几个值得注意的问题,高中数学选修21第二章,目标定位教材特点问题思考教学建议,目标定位,(1)了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。(2)经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握他们的定义、标准方程、几何图形及简单性质。(3)了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。,目标定位,(4)能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥
4、曲线的位置关系)和实际问题。(5)通过圆锥曲线的学习,进一步体会数形结合的思想。(6)结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步感受数形结合的基本思想。,坐标法,曲线与方程,椭圆,椭圆及其标准方程,双曲线,抛物线,曲线与方程,求曲线的方程,椭圆的简单几何性质,双曲线及其标准方程,双曲线的简单几何性质,抛物线及其标准方程,抛物线的简单几何性质,指导意见提出的“发展要求”,2.1曲线与方程了解曲线方程的完备性与纯粹性。2.2椭圆掌握利用曲线的方程研究曲线的几何性质的基本方法;了解椭圆的第二定义。2.3双曲线了解双曲线与椭圆的区别与联系;了解双曲线的第二定义。2.4抛物线 了解
5、椭圆、双曲线、抛物线的一些共同性质。,课时分配建议(16课时),教材特点,基本保留原有教材主干内容;强调解析几何的基本思想方法:坐标法;突出知识的发生、发展过程,引导学生自主学习;从直观入手,感受数形结合的基本思想;提供丰富的背景素材和实例,注重实际应用。,思考之一:坐标法“三步曲”,第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算结果“翻译”成几何结论。,思考之二:信息技术工具的作用,平面截圆锥的过程;“运动变化过程中保持几何关系不变”的特点,探索动点轨迹的形状。,选修21第二章(素材
6、下载),选修11第二章(素材下载),2.1曲线与方程(2课时),(1)曲线与方程了解曲线的方程、方程的曲线的概念是本课的教学核心;重视章引言的教学;通过特殊曲线感性认识曲线方程的意义(完备性、纯粹性);信息技术工具的使用。,(2)求曲线的方程掌握求曲线方程的基本方法是本课的教学核心;引导概括求曲线方程的一般步骤;体验“坐标法”思想(直线、圆的方程)体会数形结合的基本思想。,圆锥曲线统一方程不作基本教学要求,椭圆及其标准方程(2课时),(1)椭圆标准方程 掌握椭圆的定义及其标准方程是本课的教学核心;重视引入,注重过程;抓住轨迹特征;利用问题引导学习(“探究”“思考”栏目);信息技术的运用。,(2
7、)椭圆及其标准方程的应用椭圆及其标准方程的应用 是本课的教学核心;掌握用中间变量法求点的轨迹方程的方法;体会椭圆几何特征的不同表现形式;信息技术在探究中的运用。,不涉及椭圆的一般方程,(1)椭圆的简单几何性质 掌握椭圆的几何性质(范围、对称性、顶点、离心率)是本课的教学核心;从直观入手,用代数方法(方程)研究几何性质;理解离心率的几何意义;信息技术的运用。,(2)椭圆的简单几何性质的应用椭圆几何性质的应用是本课的教学核心;实际应用问题(例5);了解椭圆的第二定义;(例6)信息技术的运用。,椭圆的简单几何性质(3课时),不提出建立圆锥曲线统一方程的要求,曲线本身的性质与坐标系的选择无关,区别曲线
8、不同位置的性质与曲线本身的性质,椭圆的简单几何性质(3课时),(3)直线与椭圆的位置关系用坐标法解决简单的直线与椭圆的位置关系问题是本课的教学核心;体会坐标法思想;注意用坐标法解题过程中代数运算较复杂繁琐(如B组第4题);信息技术的运用。,双曲线及其标准方程(1课时),双曲线及其标准方程了解双曲线的定义及其标准方程是本课的教学核心;与椭圆的引入过程和标准方程的建立过程进行类比展开;(思考、探究栏目)双曲线的简单实际应用(例2);与椭圆的区别与联系;信息技术的运用。,双曲线的简单几何性质(2课时),(1)双曲线的几何性质了解双曲线的几何性质(范围、对称性、顶点、离心率、渐近线)是本课的教学核心;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 方程
链接地址:https://www.31ppt.com/p-5253176.html