圆的基本性质(圆心角、弧、弦、弦心距间的关系)剖析.ppt
《圆的基本性质(圆心角、弧、弦、弦心距间的关系)剖析.ppt》由会员分享,可在线阅读,更多相关《圆的基本性质(圆心角、弧、弦、弦心距间的关系)剖析.ppt(8页珍藏版)》请在三一办公上搜索。
1、24.2 圆的基本性质,弦、弧、圆心角、弦心距间关系,圆是中心对称图形吗?它的对称中心在哪里?,一、思考,圆是中心对称图形.,它的对称中心是圆心.,圆心角:我们把顶点在圆心的角叫做圆心角.,O,二、概念,如图,将圆心角AOB绕圆心O旋转到 的位置,你能发现哪些等量关系?为什么?,根据旋转的性质,将圆心角AOB绕圆心O旋转到AOB的位置时,显然AOBAOB,射线OA与OA重合,OB与OB重合而同圆的半径相等,OA=OA,OB=OB,从而点A与点A重合,点B与点B重合,O,A,B,O,A,B,A,B,A,B,三、,因此,弧AB与弧AB重合,弦AB与弦AB重合,A O B,弧AB=弧AB,,同样,还
2、可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角_,所对的弦_;在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角_,所对的弧_,这样,我们就得到下面的定理:,相等,相等,相等,相等,四、定理,证明:,AB=AC,ABC等腰三角形,又 ACB=60,,ABC是等边三角形,AB=BC=CA.,AOBBOCAOC.,C,五、例题,例1 如图在O中,弧AB=弧AC,ACB=60,求证:AOB=BOC=AOC.,弧AB=弧AC,,1.如图,AB、CD是O的两条弦(1)如果AB=CD,那么_,_(2)如果弧AB=弧CD,那么_,_(3)如果AOB=COD,那么_,_(4)如果AB=CD,OEAB于E,OFCD于F,OE与OF相等吗?为什么?,AB=CD,AB=CD,相 等,因为AB=CD,所以AOB=COD.,又因为AO=CO,BO=DO,,所以AOB COD.,又因为OE、OF分别是AB与CD边上的高,,所以 OE=OF.,六、练习,弧AB=弧CD,弧AB=弧CD,2.如图,AB是O的直径,弧BC=弧CD=弧DE,COD=35,求AOE的度数,解:弧BC=弧CD=弧DE,,BOC=COD=DOE=35.,弧BC=弧CD=弧DE,,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基本 性质 圆心角 弦心距间 关系 剖析
链接地址:https://www.31ppt.com/p-5253111.html