决策推理与决策支持系统.ppt
《决策推理与决策支持系统.ppt》由会员分享,可在线阅读,更多相关《决策推理与决策支持系统.ppt(64页珍藏版)》请在三一办公上搜索。
1、数据仓库和决策支持系统,主讲:鲁明羽,大连海事大学计算机科学与技术学院研究方向:智能数据分析与数据挖掘,第二章 决策推理与决策支持系统,本章内容,人脑决策推理初探电脑推理方法介绍DSS中的决策过程知识与知识表示方法,1.人脑决策推理初探,推理(inference):是由已知事实通过一定逻辑手段获得未知事实的过程。两种主要的推理方法:演绎(deductive inference)和归纳(inductive inference),图4.1 推理模型图,1.人脑决策推理初探,(1)演绎推理演绎推理是从一般到特殊的推理,其中的已知事实部分一般为一般性的规则,而其未知部分则为个体事实。,图4.2 演绎推
2、理模型,1.人脑决策推理初探,演绎推理是一种常用的推理方法,例如:数学中采用的基本方法,初等几何中由公理推导定理的方法。专家系统中也经常采用演绎推理,例如医学诊断专家系统。两种演绎推理方法:(1)三段论推理法(2)反证法,1.人脑决策推理初探,(2)归纳推理 归纳推理与演绎推理相反,是从特殊到一般的推理,其中的已知事实部分一般为大量个体事实,而其未知部分则为推导出的一般性规则。,图4.5 归纳推理模型,1.人脑决策推理初探,归纳推理也是一种常用的推理方法,例如现实生活中的一些谚语,就是通过人们通过对生活中的大量事实进行总结归纳后得出的。归纳推理得到的一般性规则,又可以用于演绎推理,指导我们的行
3、为和决策。(图4.7 归纳-演绎推理过程)数据挖掘就是采用了这个原理。,1.人脑决策推理初探,(3)联想和类比从一些已知事实或知识,通过联想,推出其他类似事物的知识。(4)综合与分析根据对事物的宏观(整体)知识推断其微观(局部)知识的方法称为“分析”;从事物的微观(局部)知识推出其宏观(整体)知识的方法称为“综合”。,1.人脑决策推理初探,(5)预测根据事物的过去和现在知识,来推断未来的知识,或者从事物局部空间的知识,推断其局部以外的情况。(6)假设与验证根据经验作出假设,然后用逻辑推理或实践检验的方法获得新的知识。有时会否定假设或部分修正假设,然后再作验证,也可称为“试探推理法”。,2.电脑
4、推理方法介绍,电脑推理一般是模仿人脑的推理方式和过程,通过编制软件完成。2.1 电脑的演绎推理方法(1)规则模型表示一般性规则有两种表示方法:数学方法人工智能方法,2.电脑推理方法介绍,(2)基于数学模型的演绎推理 数学方法中一般采用数学模型,例如数学表达式、方程式等。基于数学模型的演绎推理实际上是数学推演方法,一般将一些常用的演算方法作为固定算法,编程实现后存入方法库中,例如最小二乘法、线性规则、回归分析等。数学建模和推理时则调用方法库中算法。,2.电脑推理方法介绍,(3)基于逻辑模型的演绎推理 人工智能常用的知识表示方法包括谓词逻辑、语义网络、Petri网、框架表示等。其中最常见的是谓词逻
5、辑表示法,即将规则表示为一组数理逻辑中的一阶谓词逻辑的合法公式,采用一阶谓词的推理方法,以实现演绎推理。该推理过程实际上是一种定理证明过程,其规则一般为公理,而结果为个体事实,即推导出的定理。,2.电脑推理方法介绍,20世纪60年代,美国科学家Robinson证明,存在一种统一的、固定的证明过程,对于所有的一阶谓词逻辑中的定理证明都基本有效,这就是所谓的谓词逻辑的自动定理证明。利用上述成果,可以将定理证明过程用一种统一算法表示并编程实现,从而使运用人工智能方法进行演绎推理可以用一种统一的程序或过程来实现。用此方法所实现的软件系统称为推理引擎(inference engine)。,2.电脑推理方
6、法介绍,2.2 电脑的归纳推理方法主要有两种:验证型归纳和探索型归纳。(1)验证型归纳首先对于推理结果产生一些假设(模型);设计一个试验环境,并置入设想模型;启动试验过程,用大量个体事实做测试,通过人机交互将得到的结果与原设想做比较如果结果不符,修改试验,反复上述过程,2.电脑推理方法介绍,(2)探索型归纳 没有明确的假设模型,只有大致的目标,一般采用数据挖掘技术实现,主要方法有:关联分析(association):挖掘出潜藏在客体间的内在相互联系;分类(classifier):对待分类的客体集合进行分析,找出每个分类的特征;聚类分析(clustering):对一组客体按某种规则聚为若干类。,
7、3.DSS中的决策过程,在DSS中,除了决策推理部分之外,还有数据仓库部分。二者相结合,构成了一个完整的决策过程。3.1 DSS中的演绎型决策过程 在DSS中,演绎型决策过程是由演绎中的一般性规则与数据仓库中的数据共同作为推理前提,通过演绎推理,最终得到个体事实数据作为结论。,3.DSS中的决策过程,基于不同推理模型,DSS的演绎型决策过程有不同的形式。,图4.9 DSS中演绎型决策过程示意图,3.DSS中的决策过程,图4.10 DSS中基于数学模型的演绎型决策过程示意图,基于数学模型的演绎型决策过程 数据仓库数据作为数学模型中的参数输入,而演绎推理则是通过方法库中方法调用方式实现。,3.DS
8、S中的决策过程,基于逻辑模型的演绎型决策过程 数据仓库数据作为假设前提输入,而演绎推理则是用推理引擎实现。,图4.11 DSS中基于逻辑模型的演绎型决策过程示意图,3.DSS中的决策过程,3.2 DSS中的归纳型决策过程 在DSS中,归纳型决策过程是由数据仓库中的数据作为大量个体事实输入,经归纳推理而得到一般性原则。,3.DSS中的决策过程,(1)验证型归纳的决策过程 其归纳推理部分即为数据实验室的人-机交互试验,简称数据实验室试验。OLAP是DSS常用的验证型归纳推理。,图4.13 DSS中验证型归纳决策过程示意图,数据(数据仓库),一般性规则,数据实验室试验,3.DSS中的决策过程,(2)
9、探索型归纳的决策过程其归纳推理部分即为各种类型算法调用。数据挖掘是DSS常用的探索型归纳推理。,图4.14 DSS中探索型归纳决策过程示意图,数据(数据仓库),一般性规则,算法调用,3.DSS中的决策过程,3.3 包含推理的DSS总体结构图DSS主要由数据仓库与决策推理两部分组成,加上结果展示模块,构成了完整的决策过程。如图4.15所示。,4.知识与知识表示方法,知识库:存放各种规则、因果关系和决策人员的经验等推理机:综合运用知识库、数据库和定量计算的结果,进行推理和问题求解。,DSS能够有效支持单纯用定量方法无法很好解决的半/非结构化问题的求解,主要依靠知识库和推理机的运用。,4.1 基本概
10、念,数据:客观事物的属性、数量、位置及其相互关系等的抽象表示例如:,二元组:(面粉,白色)三元组:(中国,亚洲,在东面)(+,8,5):今年8岁的孩子5年后的年龄五元组:(+,X,Y,Z):X+Y=Z,4.1 基本概念,信息:数据所表示的含义(语义),是对数据的解释。一般可用一组描述词及其值来表示:(描述词1:值,描述词2:值,),例:(时间:2006.10.1,地点:大连地区,天气:晴朗,程度:十分),4.1 基本概念,知识:以各种科学方式将多个信息关联在一起形成的信息结构。原子事实:不与任何其他信息发生关联的单独信息,是知识的一个特例。,例:“他是军人”、“他穿军装”均为原子事实;而“如果
11、他是军人,则他穿军装”是一条常识性知识。另外,“如果某地重度异常,则有铝矿”是一条知识,但是不正确。,4.1 基本概念,知识的正确型类型:正确,错误,部分正确,未知真假知识的关联形式多种多样,可以是分层次的,即可以把知识解释为一种分层次关联的信息结构可以用BNF形式定义知识,4.1 基本概念,知识:=|:=|(的一个序列):=(的一个序列):=,4.1 基本概念,知识的分类事实:指人类对于客观事物属性的值或状态的描述,不包含任何变量,可以用一个值为真的命题陈述,或者用一种状态的描述来表达。例如:,大海是蓝色的我今年18岁今天很热,4.1 基本概念,规则:指可以分为前提(条件)和结论两个部分,用
12、以表达因果关系的知识。一般形式为:如果A,则B A-B可以用三段论推理形成一条推理链。,4.1 基本概念,规律:规则知识可分为带变量和不带变量两种形式。将带变量的规则称为规律。规律中的变量一旦被实例化为一个具体的值,则规律就变成了一条不带变量的规则一条规律通过变量实例化,可以派生出许多规则。因此,在这种意义上规律表示了一类知识,比规则更宽泛。,4.1 基本概念,知识的属性真实性:应为经过实践检验的或者可用逻辑推理证明真伪的相对性:在一定的条件和环境内有效不完全性:许多知识是部分正确的模糊性:许多知识不是完全精确的,4.1 基本概念,可表示性:可用某种方式加以描述 符号,图形,形态,等等可存储性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 决策 推理 支持系统
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-5242280.html