内力分析和内力图.ppt
《内力分析和内力图.ppt》由会员分享,可在线阅读,更多相关《内力分析和内力图.ppt(96页珍藏版)》请在三一办公上搜索。
1、工程力学,第三章 内力分析和内力图,第四章 内力分析和内力图,4-1 内力方程,4-3 扭转内力,4-2 拉伸与压缩内力,4-4 弯曲内力,4-5 平面刚架和平面曲杆的内力,4-6 平面桁架内力的计算,外力作用引起构件内部附加的相互作用力。,求内力的方法截面法(截取代平),1、截,2、取,3、代,4、平,内力,例0-1、求mm、nn截面上的内力。,1、对m-m截面:,解:,2、对n-n截面:,例 0-2、求mm、nn截面上的内力。,解:,1、沿m-m截面截开,取上半部分,O,2、沿n-n 截面截开,取右半部,例4-1、列出图示结构水平段的内力方程。,解:,取最右端为坐标原点,假设任一截面到坐标
2、原点的距离为x,表示内力沿截面变化规律的函数,4-1 内力方程,内力方程:,4-2 拉伸与压缩内力,受力特点:,作用在杆件上的外力或外力合力的作用线与杆件轴线重合,变形特点:,拉伸,压缩,杆件变形是沿轴线方向的伸长或缩短、横向缩小或变粗。,横截面上内力的方向与轴线重合。,2、截面法求轴力,截:,取:,1、轴力:,假想沿m-m横截面将杆切开,取左半段或右半段,3、轴力正负号:,代:,平:,将抛掉部分对选取部分的作用用内力代替,对选取部分列平衡方程求出内力即轴力的值。,拉为正、压为负(与截面外法线方向一致为正,否则为负),轴力的简便计算方法,任一横截面的轴力等于截面一侧所有外力引起的轴力的代数和,
3、每一个外力引起的轴力的大小等于该外力,每一个外力引起的轴力符号的按如下规定确定:,外力的方向背离截面,引起的轴力为正;反之为负。,轴力图:,选定一个坐标系,横坐标表示横截面的位置,纵坐标表示相应截面上的轴力,所得到的图线。,例4-2、已知F1=10kN;F2=20kN;F3=35kN;F4=25kN;试画出图示杆件的轴力图。,解:,将杆件分成3段,集中力作用点为分段点,AB段,BC段,CD段,绘制轴力图。,10kN,10kN,25kN,4-3 扭转内力,汽车传动轴,汽车方向盘,一 扭转的概念和实例,受力特点:,变形特点:,作用在杆件上的载荷均为力偶,且力偶矢方向与轴线一致,杆件的各个横截面绕杆
4、轴发生相对转动,扭转变形是指杆件受到若干个与轴线方向一致的力偶矢作用,使杆件的横截面绕轴线产生转动。,受扭转变形杆件称为轴,其横截面大都是圆形的。所以本章主要介绍圆轴扭转。,二、扭矩内力,1、外力分析,外力形式:,受到扭转外力偶的作用,扭转外力偶矩的计算,-直接计算法,-按输入功率和转速计算,电机每秒输出功:,力偶作功:,式中:,T称为横截面1-1上的扭矩,2、内力分析,(1)横截面上内力形式:,T方向垂直于截面的内力偶矩,得:,取左段研究:,取右段研究:,得:,(2)扭矩正负号的规定,右手螺旋法则,右手四指沿扭矩的转向环绕:拇指指向与截面外法线方向一致,则扭矩为正(+);反之为负(-),某一
5、截面的扭矩等于截面一侧所有外力偶矩引起的扭矩的代数和;每一个外力偶矩引起的扭矩大小等于该外力偶矩,符号按以下规定确定:,计算截面扭矩的简便方法:,外力偶矩的方向背离截面,引起的扭矩为正;反之为负。,(3)扭矩图,例题4-3、一传动轴如图所示,其转速 n=300 r/min,主动轮A输入的功率为PA=36 kW,若不计轴承摩擦所耗的功率,三个从动轮输出的功率分别为PB=11 kW、PC=11 kW 及 PD=14 kW,试做扭矩图。,解:,计算外力偶矩,集中力偶作用点为分段点,BC 段扭矩方程,CA 段扭矩方程,AD 段扭矩方程,作扭矩图,例44、试作轴的扭矩图。,解:根据载荷分布情况,应分三段
6、研究。,AB段:,BC段:,CD段:,分布载荷的起点及终点也为分段点,4-4 弯曲内力,一、弯曲的概念和实例,起重机大梁,车削工件,火车轮轴,外力(包括力偶)的作用线垂直于杆轴线.,受力特征:,变形特征:,变形前为直线的轴线,变形后成为曲线.,以弯曲变形为主的杆件通常称为梁,常见弯曲构件的横截面类型,平面弯曲,具有纵向对称面,外力都作用在纵向对称面内,垂直于轴线,弯曲变形后轴线变成对称面内的一条平面曲线,二、梁的简化,载荷,集中载荷,分布载荷,集中力偶,支座的类型,固定铰支座,活动铰支座,固定端,静定梁的基本形式,简支梁,外伸梁,悬臂梁,火车轮轴简化,简化的实例,梁的简化:用梁的轴线代替杆件本
7、身。,被车削工件的简化,吊车大梁简化,均匀分布载荷简称均布载荷,三、弯曲变形的内力,梁横截面上的内力,截面法,C,FS剪力,平行于横截面的内力的合力。,M弯矩,垂直于横截面的内力系的合力偶矩。,剪力和弯矩合称为梁横截面上的内力。,无,内力符号规定,取左段与取右段所得结果等值反向!,按变形,左上右下错动趋势“+”,左下右上错动趋势“-”,“FS”,若外力对截面中心取矩为顺时针方向,则引起的剪力为正;反之为负。,顺为正,逆为负,按外力:,按变形,“M”,凹向上“+”,凹向下“-”,按外力(包括外力和外力偶),截面左侧的外力对截面中心取矩为顺时针,截面右侧的外力对截面中心取矩为逆时针,则引起的弯矩为
8、正;反之为负。,左顺右逆为正,反之为负,某一截面剪力和弯矩的计算简便方法,某一截面的内力(剪力或弯矩)等于截面一侧所有外力(外力和外力偶)引起内力的代数和,顺为正;逆为负,左顺右逆为正;反之为负,每一个外力引起剪力的大小等于该外力,符号按如下规定确定:,每一外力(包括力偶)引起弯矩的大小等于外力或外力偶对截面中心的矩,符号按如下规定确定:,例47、求下图1-1、2-2、3-3、4-4、5-5的FS、M值。,解:,1、外力分析,2、内力分析,1-1截面,某一截面的内力(剪力或弯矩)等于截面一侧所有外力引起内力的代数和,2-2截面,3-3截面,4-4 截面,5-5 截面,例48、下图悬臂梁1-1、
9、2-2截面上的FS、M值。,解:,1、外力分析,2、内力分析,1-1截面,2-2截面,课堂练习:,计算梁中1-1与2-2截面内力。,某一截面的内力(剪力或弯矩)等于截面一侧所有外力引起内力的代数和,计算梁中1-1与2-2截面内力。,解:,1-1截面,2-2截面,四、剪力和弯矩方程 剪力图和弯矩图,1、剪力方程,2、弯矩方程,FS=FS(x),M=M(x),表示沿梁轴线各横截面上剪力和弯矩的变化规律的函数,分别称作剪力方程和弯矩方程。,1、剪力方程和弯矩方程,2、剪力图和弯矩图,以平行于梁轴的横坐标x表示横截面的位置,以纵坐标表示相应截面上的剪力和弯矩.这种图线分别称为剪力图和弯矩图,弯矩图为正
10、值画在 x 轴上侧,负值画在x 轴下侧,剪力图为正值画在 x 轴上侧,负值画在x 轴下侧,例49、如图所示的悬臂梁在自由端受集中荷载 F 作用,试作此梁的剪力图和弯矩图。,解:,(1)将坐标原点取在梁的左端,列出梁的剪力方程和弯矩方程,集中力、集中力偶作用点,支座点,分布载荷的起点或终点为分段点,对应于无均布载荷作用的梁,剪力图为平直线,弯矩图为斜直线,列剪力方程和弯矩方程,并利用剪力方程和弯矩方程画剪力图和弯矩图的步骤;,1、求支反力;,悬臂梁一般不必求支反力,2、找出分段点将梁分段;,集中力、集中力偶作用点,支座点,分布载荷的起点或终点为分段点。,3、取好坐标原点,写出每一段的剪力方程及弯
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 内力 分析 力图
链接地址:https://www.31ppt.com/p-5239348.html