全等三角形辅助线分类.ppt
《全等三角形辅助线分类.ppt》由会员分享,可在线阅读,更多相关《全等三角形辅助线分类.ppt(22页珍藏版)》请在三一办公上搜索。
1、A,B,D,E,F,M,N,专题讲解,三角形辅助线的方法,连线法,第一关,如图,AB=AD,BC=DC,求证:B=D.,连接AC,构造全等三角形,连线 构造全等,连线 构造全等,如图,AB与CD交于O,且AB=CD,AD=BC,OB=5cm,求OD的长.,连接BD,构造全等三角形,A,C,B,D,O,第二关,中线倍增法,如何利用三角形的中线来构造全等三角形?,可以利用倍长中线法,即把中线延长一倍,来构造全等三角形。,如图,若AD为ABC的中线,,必有结论:,A,B,C,D,E,1,2,延长AD到E,使DE=AD,连结BE(也可连结CE)。,ABDECD,,1=E,,B=2,,EC=AB,CEA
2、B。,已知,如图AD是ABC的中线,,延长AD到点E,使DE=AD,连结CE.,思考:若AB=3,AC=5求AD的取值范围?,倍长中线,第三关,利用角平分线截长补短,可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。,如何利用三角形的角平分线来构造全等三角形?,问题:,如图,在ABC中,AD平分BAC。,方法一:,A,B,C,D,E,必有结论:,在AB上截取AE=AC,连结DE。,ADEADC。,ED=CD,,3,*,2,1,AED=C,,ADE=ADC。,方法二:,A,B,C,D,F,延长AC到F,使AF=AB,连结DF。,必有结论:,ABDAFD。,BD=FD,,如何利用三角形
3、的角平分线来构造全等三角形?,问题:,3,*,2,1,如图,在ABC中,AD平分BAC。,可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。,B=F,,ADB=ADF。,如何利用三角形的角平分线来构造全等三角形?,问题:,A,B,C,D,M,N,方法三:,作DMAB于M,DNAC于N。,必有结论:,AMDAND。,DM=DN,,3,*,2,1,如图,在ABC中,AD平分BAC。,可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。,AM=AN,,ADM=AND。,(还可以用“角平分线上的点到角的两边距离相等”来证DM=DN),练习1,如图,已知ABC中,AD是BAC的角平
4、分线,AB=AC+CD,求证:C=2B,A,B,C,D,E,1,2,2,1,证明:,在AB上截取AE,使AE=AC,连结DE。,AD是BAC的角平分线(已知)1=2(角平分线定义)在AED和ACD中 AE=AC(已知)1=2(已证)AD=AD(公共边)AEDACD(),3,B=4(等边对等角),4,*,C3(全等三角形的对应角相等),又 AB=AC+CD=AE+EB(已知)EB=DC=ED(等量代换),3=B+4=2B(三角形的一个外角等于和它不相邻的两个内角和)C=2B(等量代换),ED=CD(全等三角形的对应边相等),.角平分线上点向两边作垂线段,典例2:如图,ABC中,C=90o,AC=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 辅助线 分类
链接地址:https://www.31ppt.com/p-5234831.html