信息材料5OptoelectronicMaterials-pa.ppt
《信息材料5OptoelectronicMaterials-pa.ppt》由会员分享,可在线阅读,更多相关《信息材料5OptoelectronicMaterials-pa.ppt(163页珍藏版)》请在三一办公上搜索。
1、Chapter 5.Optical Materials,材料的光学性质与光电性质发光材料光盘光纤光子晶体双光子材料光电材料折光材料光致变色、光致异构材料双折射材料上转换材料激光材料液晶材料,5.1 固体的光性质和光功能材料 固体的光性质,从本质上讲,就是固体和电磁波的相互作用,这涉及晶体对光辐射的反射和吸收,晶体在光作用下的发光,光在晶体中的传播和作用以及光电作用、光磁作用等。基于这些性质,可以开发出光学晶体材料、光电材料、发光材料、激光材料以及各种光功能转化材料等。在本章中,我们从固体对光的吸收的本质开始,然后介绍光电材料、发光材料和激光材料等。,5.1 固体对光的吸收与光电转换材料5.1.
2、1 固体光吸收的本质,我们先讨论纯净物质对光的吸收。基础吸收或固有吸收 固体中电子的能带结构,绝缘体和半导体的能带结构如图5.1所示,其中价带相当于阴离子的价电子层,完全被电子填满。导带和价带之间存在一定宽度的能隙(禁带),在能隙中不能存在电子的能级。这样,在固体受到光辐射时,如果辐射光子的能量不足以使电子由价带跃迁至导带,那么晶体就不会激发,也不会发生对光的吸收。,例如,离子晶体的能隙宽度一般为几个电子伏,相当于紫外光的能量。因此,纯净的理想离子晶体对可见光以至红外区的光辐射,都不会发生光吸收,都是透明的。碱金属卤化物晶体对电磁波透明的波长可以由25m到250nm,相当于0.055ev的能量
3、。当有足够强的辐射(如紫光)照射离子晶体时,价带中的电子就有可能被激发跨过能隙,进入导带,这样就发生了光吸收。这种与电子由价带到导带的跃迁相关的光吸收,称作基础吸收或固有吸收。例如,CaF2的基础吸收带在200nm(约6ev)附近,NaCl的基础吸收约为8ev,Al2O3的基础吸收约在9ev。,激子吸收 除了基础吸收以外,还有一类吸收,其能量低于能隙宽度,它对应于电子由价带向稍低于导带底处的的能级的跃迁。这些能级可以看作是一些电子-空穴(或叫做激子,excition)的激发能级(图5.2)。处于这种能级上的电子,不同于被激发到导带上的电子,不显示光导电现象,它们和价带中的空穴偶合成电子-空穴对
4、,作为整体在晶体中存在着或运动着,可以在晶体中运动一段距离(1m)后再复合湮灭。,缺陷存在时晶体的光吸收晶体的缺陷有本征的,如填隙原子和空位,也有非本征的,如替代杂质等。这些缺陷的能级定于在价带和导带之间的能隙之中。当材料受到光照时,受主缺陷能级接受价带迁移来的电子,而施主能级上的电子可以向导带迁移,这样就使原本不能发生基础吸收的物质由于缺陷存在而发生光吸收,图5.3给出了各种光吸收的情况。,CV过程 在高温下发生的电子由价带向导带的跃迁。EV过程 这是激子衰变过程。这种过程只发生在高纯半导体和低温下,这时KT不大于激子的结合能。可能存在两种明确的衰变过程:自由激子的衰变和束缚在杂质上的激子的
5、衰变。,基础吸收,激子吸收,DV过程 这一过程中,松弛的束缚在中性杂质上的电子和一个价带中的空穴复合,相应跃迁能量是EgED。例如对GaAs来说,低温下的Eg为1.1592ev,许多杂质的ED为0.006ev,所以DV跃迁应发生在1.5132ev处。因此,发光光谱中在1.5132ev处出现的谱线应归属于这种跃迁。具有较大的理化能的施主杂质所发生的DV跃迁应当低于能隙很多,这就是深施主杂质跃迁DDV过程。,掺杂能带,CA过程 本征半导体导带中的一个电子落在受主杂质原子上,并使受主杂质原子电离化,这个过程的能量为EgEA。例如对GaAs来说,许多受主杂质的EA为0.03ev,所以CA过程应发生在1
6、.49ev处。实际上,在GaAs的发光光谱中,已观察到1.49ev处的弱发光谱线,它应当归属于自由电子-中性受主杂质跃迁。导带电子向深受主杂质上的跃迁,其能量小于能隙很多,这就是深受主杂质跃迁CDA过程。,DA过程 如果同一半导体材料中,施主和受主杂质同时存在,那么可能发生中性施主杂质给出一个电子跃迁到受主杂质上的过程,这就是DA过程.。发生跃迁后,施主和受主杂质都电离了,它们之间的结合能为:Eb=-e2该过程的能量为:EgEDEAEb。,5.1.2 无机离子固体的光吸收 无机离子固体的禁带宽度较大,一般为几个电子伏特,相当于紫外光区的能量。因此,当可见光以至红外光辐照晶体时,如此的能量不足以
7、使其电子越过能隙,由价带跃迁至导带。所以,晶体不会被激发,也不会发生光的吸收,晶体都是透明的。而当紫外光辐照晶体时,就会发生光的吸收,晶体变得不透明。禁带宽度Eg和吸收波长的关系为 Eg=h=hc/=hc/Eg 式中h为普朗克常数6.6310-34 Js,c为光速。,然而如前所述,在无机离子晶体中引入杂质离子后,杂质缺陷能级和价带能级之间会发生电子-空穴复合过程,其相应的能量就会小于间带宽度Eg,往往落在可见光区,结果发生固体的光吸收。例如,Al2O3晶体中Al3+和O2-离子以静电引力作用,按照六方密堆方式结合在一起,Al3+和O2-离子的基态能级为填满电子的的封闭电子壳层,其能隙为9ev,
8、它不可能吸收可见光,所以是透明的。,如果在其中掺入0.1%的Cr3+时,晶体呈粉红色,掺入1%的Cr3+时,晶体呈深红色,此即红宝石,可以吸收可见光,并发出荧光。这是由于掺入的Cr3+离子具有填满电子的壳层,在Al2O3晶体中造成了一部分较低的激发态能级,可以吸收可见光。实际上,该材料就是典型的激光材料,我们在本章中还会讨论。,杂质原子在无机绝缘体中光学性质的研究范围十分广泛,作为基质材料的化合物有碱金属卤化物、碱土金属卤化物、-族化合物、氧化物、钨酸盐、钼酸盐、硅酸盐、金刚石和玻璃体等。而掺入作为光学活性中心的杂质离子多数为过渡金属和稀土金属离子等。图5.4给出了离子晶体的各种吸收光谱示意。
9、,图5.4 离子晶体的各种吸收光谱示意,5.1.3 半导体的光吸收和光导电现象 1.本征半导体的光吸收 本征半导体的电子能带结构与绝缘体类似,全部电子充填在价带,且为全满,而导带中没有电子,只是价带和导带之间的能隙较小,约为1ev。在极低温度下,电子全部处在价带中,不会沿任何方向运动,是绝缘体,其光学性质也和前述的绝缘体一样。当温度升高,一些电子可能获得充分的能量而跨过能隙,跃迁到原本空的导带中。这时价带中出现空能级,导带中出现电子,如果外加电场就会产生导电现象。因此,室温下半导体材料的禁带宽度决定材料的性质。本征半导体的光吸收和发光,一般说来都源于电子跨越能隙的跃迁,即直接跃迁。价带中的电子
10、吸收一定波长的可见光或近红外光可以相互脱离而自行漂移,并参与导电,即产生所谓光导电现象。当导带中的一个电子与价带中的一个空穴复合时,就会发射出可见光的光子,这就是所谓光致发光现象。,2.非本征半导体的光吸收 掺入半导体的杂质有三类:施主杂质、受主杂质和等电子杂质。这些杂质的能级定域在能隙中,就构成了图5.3所示的各种光吸收跃迁方式。等电子杂质的存在可能成为电子和空穴复合的中心,会对材料的发光产生影响,单独的施主和受主杂质不会影响到材料的光学性质。这是因为只有当激发态电子越过能隙与空穴复合时,才会发生半导体的发光。譬如,n型半导体可以向导带提供足够的电子,但在价带中没有空穴,因此不会发光。同样,
11、p型半导体价带中有空穴,但其导带中却没有电子,因此也不会发光。如果将n型半导体和p型半导体结合在一起形成一个p-n结,那么可以在p-n结处促使激发态电子(来自n型半导体导带)和空穴(来自p型半导体价带)复合。我们在p-n结处施加一个正偏向压,可以将n区的导带电子注入到p区的价带中,在那里与空穴复合,从而产生光子辐射。这种发光值发生在p-n结上,故称作注入结型发光。这是一种电致发光,是发光二极管工作的基本过程。图5.5示意出p-n结注入发光的原理示意。,这种将低压电能转变为光的方法是很方便的,已经用于制作发光二极管和结型激光器。利用半导体材料GaAs1-xPx的可调正x值来改变能隙,从而制作出从
12、发红光到发绿光的各种颜色的发光二极管。也可以利用相反过程,用大于能隙宽度的能量的光照射p-n结,半导体吸收光能,电子从价带激发到导带,价带中产生空穴。P区的电子向n区移动,n区的空穴向p区移动,结果产生电荷积累,P区带正电,n区带负电,如果外接电路,电路中就会有电流通过。利用这种原理可以将太阳能转化为电能。例如,将n型半导体CdS上电析一层p型半导体Cu2S形成p-n结,就可以制成高性能的太阳能电池。,图5.5 p-n结注入发光过程示意,3.光导电现象 在晶体对光的基础吸收中,同时会产生电子和空穴成为载流子,对晶体的电导作出贡献。在晶体的杂质吸收中,激发到导带中的电子可以参与导电,但留下来的空
13、穴被束缚在杂质中心,不能参与导电。这样的空穴俘获邻近的电子而复合。当价带电子受光激发到杂质中心时,价带中产生的空穴可以参与导电。图5.6表示光导电晶体中载流子的生成和消失:(a)表示电子和空穴的生成,(b)表示电子和空穴的复合,(c)表示晶体的禁带中存在陷阱及其载流子的生成。,图5.6 光导电晶体中载流子的生成和消失,图5.7 AgBr的光导电流随电压的变化(-185,照射光波长546nm,强度6.51010个光子/秒)当电场强度一定时,改变光的强度会对光导电流产生影响。一般地,光导电流强度与光强成正比变化。,图5.7 AgBr的光导电流随电压的变化,这样有光辐射激发产生的载流子,一方面在负荷
14、中心消失掉,另一方面在电场作用下可以移动一段距离后,再被陷阱俘获。如果外电场强度大,则载流子再被陷阱所俘获之前在晶体中飘移的距离长、光电流强,但会有一个饱和值(即初级光电流的最大值),图5.7为AgBr的情况。,利用半导体的光导电效应,把光的信息转化为电的信息,这在现代技术和日常生活中已得到广泛应用。例如,对可见光敏感的CdS用于照相机的自动曝光机,半导体硒应用在静电复印机上;利用对红外线敏感的PbS、PbSe、PbTe等制成红外线探测器、传感器等。,5.2 固体的发光和发光材料5.2.1 发光概论1激发源和发光材料分类发光(Luminescence)一般用来描述某些固体材料由于吸收能量而随之
15、发生的发射光现象。发光可以以激发光源类型的不同划分为如下发光类型:光致发光(Photoluminescence):以光子或光为激发光源,常用的有紫外光作激发源。电致发光(Electroluminescence):以电能作激发源。阴极致发光(Cathodoluminescence):使用阴极射线或电子束为激发源。2发光材料的特性一般而言,对发光材料的特性有三个要求:发光材料的颜色 发光材料有彼此不同的颜色。发光材料的颜色可通过不同方法来表征。,发射光谱和吸收光谱是研究中应用比较多的方法。吸收光谱是材料激发时所对应的光谱,相应吸收峰的波长就是激发时能量对应波长,如图5.8所示ZnS:Cu 的吸收谱
16、带。发射光谱反映发光材料辐射光的情况,对应谱峰的波长就是发光的颜色,一般说来其波长大于吸收光谱的波长。,图5.8 光致发光材料的吸收光谱,图5.9 发光材料的发射光谱和吸收光谱,1图为Zn2SiO4:Mn的发射光谱,图2为其吸收光谱,正常Stokes位移,颜色的单色性 从材料的发射光谱来看,发射谱峰的宽窄也是发光材料的重要特性,谱峰越窄,发光材料的单色性越好,反之亦然。我们将谱峰1/2高度时缝的宽度称作半宽度。如图5.10所示。依照发射峰的半宽度可将发光材料还分为3种类型:宽带材料:半宽度100nm,如CaWO4;窄带材料:半宽度50nm,如Sr(PO4)2Cl:Eu3+;线谱材料:半宽度0.
17、1nm,如Gd(VO4):Eu3+;,图5.10 发射峰的半宽度,发光材料究竟属于哪一类,既与基质有关,又与杂质有关。例如,将Eu2+掺杂在不同的基质中,可以得到上述3种类型的发光材料,而且随着基质的改变,发光的颜色也可以改变。,发光效率 发光材料的另一个重要特性是其发光强度,发光强度也随激发强度而改变。通常用发光效率来表征材料的发光本领,有3种表示方法:量子效率 发射物质辐射的量子数N发光与激发光源输入的量子数N吸收(如果是光致发光则是光子数;如系电子发光,则是电子数。余类推。)的比值:B量子=N发光/N吸收 能量效率 发光能量与激发源输入能量之间的比值 B量子=E发光/E吸收 如果是光致发
18、光,又与E=h,所以能量效率还可以表示如下:B量子=E发光/E吸收=h发光/h吸收=发光/吸收 光度效率 发光的流明数与激发源输入流明数的比值:B量子=光度发光/光度吸收,余辉 发光材料的一个重要特性是它的发光持续时间。依发光持续时间,我们可应将发光区分为荧光和磷光:荧光(Fluorescence):激发和发射两个过程之间的间隙极短,约为1s,色彩学基础,RGB三基色原理:RGB颜色空间采用加法混色法,因为它是描述各种“光”通过何种比例来产生颜色。光线从暗黑开始不断叠加产生颜色。由于不同的设备对同一图像有不同的色彩显示结果,因此RGB颜色空间是与设备相关的色彩空间。,RGB三基色加减法原理:平
19、常所看到的颜色都可以用红、绿、蓝3种彼此独立的基色匹配而成。但在匹配某种颜色时,不是将3种颜色叠加起来,而是从2种颜色叠加的结果中减去第3种颜色。,国际照明协会决定选取一组三基色参数x、y、z,时的颜色匹配过程中只有叠加的办法,称作(x、y、z系统)。任何一种颜色Q在这种系统中表示为:Q=ax+by+cz这3个系数的相对值为:,称色坐标。由于x+y+z=1,如x、y确定,z值也定,因此可以用一个平面图来表示各种颜色。图5.11就给出了这种颜色坐标图。任何一种颜色均可用坐标x、y来表征。,图5.11 CIE1931 XY颜色坐标图,CMYK颜色空间CMYK颜色空间描述的是青,品红,黄和黑四种油墨
20、的数值。以打印在纸上的油墨的光线吸收特性为基础。当白光照射到半透明油墨上时,某些可见光波长被吸收(减去),而其他波长则被反射回眼睛。这些颜色因此称为减色。,理论上,青色(C)、品红(M)和黄色(Y)色素在合成后可以吸收所有光线并产生黑色。由于所有的打印油墨都存在一些杂质,这三种油墨实际会产生土棕色。因此,在四色打印中除了使用青色、品红和黄色油墨外,还会使用黑色油墨(K)。且CMYK颜色空间与RGB颜色空间一样,均是与设备有关的色彩空间。,HSB颜色空间HSB颜色空间使用类似的三个轴来定义颜色。HSB源自RGB颜色空间,并且是设备相关的色彩空间。HSB 中三个基本的颜色特征如下:,HSB模型能直
21、接体现色彩之间的关系,所以非常适合于色彩设计,绝大部分的设计软件都提供了这种色彩模型,包括Windows的系统调色板也是采用这种色彩模型。,H:色相是从物体反射或透过物体传播的颜色。在0到360度的标准色轮上,按位置度量色相。S:饱和度(有时称为色度)是指颜色的强度或纯度。饱和度表示色相中灰色分量所占的比例,它使用从0%(灰色)至100%(完全饱和)的百分比来度量。在标准色轮上,饱和度从中心到边缘递增。B:亮度是颜色的相对明暗程度,通常使用从 0%(黑色)至 100%(白色)的百分比来度量。,Lab颜色空间 Lab颜色空间(也称为CIE Lab)是当前最通用的测量物体颜色的色空间之一,可广泛应
22、用于所有领域。它是均匀色空间之一,是由CIE在1976年制定的。在这一色空间中,L是亮度,a和b是色度坐标。,ab色度图:a和b表示色方向:+a为红色方向,-a为绿色方向,+b为黄色方向,-b为蓝色方向。中央为消色区;当a和b值增大时,色点远离中心,色饱和度增大。,CIE-LAB匀色空间的优点是:当颜色的色差大于视觉的识别阈值(恰可察觉)而又小于孟塞尔系统中相邻两极的色差值时,能较好地反映物体色的心理感受效果。CIELAB表色直观,能直观的评价颜色。因为CIELAB是与设备无关的色彩空间,在色彩管理中,利用此特性,可沟通和推算出原稿色、屏幕色和印刷色在色空间的对应关系,达到颜色在视觉上的一致,
23、实现不同设备之间的色彩转换。,蒙赛尔色彩体MUNSELL 蒙塞尔所创建的颜色系统是用颜色立体模型表示颜色的方法。它是一个三维类似球体的空间模型,把物体各种表面色的三种基本属性色相、明度、饱和度全部表示出来。以颜色的视觉特性来制定颜色分类和标定系统,以按目视色彩感觉等间隔的方式,把各种表面色的特征表示出来。目前国际上已广泛采用蒙塞尔颜色系统作为分类和标定表面色的方法。蒙塞尔颜色立体如图34所示,中央轴代表无彩色黑白系列中性色的明度等级,黑色在底部,白色在顶部,称为蒙塞尔明度值。它将理想白色定为10,将理想黑色定为0。蒙塞尔明度值由010,共分为11个在视觉上等距离的等级。,蒙塞尔颜色立体示意图,
24、蒙塞尔色相的水平剖面标定系统,奥斯特瓦尔德体系OSTWALD奥斯特瓦尔德(Ostwald)体系:奥斯华德色相以8色相为基础,每一色相再分3色,共24色相,明度阶段由白到黑,以a、c、e、g、i、l、n、p记号表示,所有色彩均为C纯色量W白色量B黑色量100。,奥斯特瓦尔德色系的颜色立体,奥斯特瓦尔德色相环,522荧光和磷光1光致发光材料的基本组成 光致发光材料一般需要一种基质晶体结构,例如ZnS、CaWO4和Zn2SiO4等,在掺入少量的诸如Mn2+、Sn2+、Pb2+、Eu2+那样的阳离子。这些阳离子往往是发光活性中心,称作激活剂(Activators)。有时还需要掺入第2类型的杂质阳离子,
25、称作敏活剂(Sensitizer)。图5.12说明一般荧光体和磷光体的发光机制。一般说来,发光固体吸收了激活辐射的能量h,发射出能量为h的光,而总小于,即发射光波长比激活光的波长要增大。这种效应称作斯托克位移(Stokes shift)。具有这种性质的磷光体称作斯托克磷光体。,(a)(b)图5.12 荧光体和磷光体的发光机制,2.光致发光原理:位形坐标模型(Configurational Coordinate Model CCM)晶体中的离子其吸收光谱与发射光谱与自由离子不同。自由离子的吸收光谱与发射光谱的能量相同,并且都是窄带谱或锐线谱(0.01cm-1)。而晶体中离子的发射光谱的能量均低于
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信息 材料 OptoelectronicMaterials pa
链接地址:https://www.31ppt.com/p-5229935.html